
Introduction to the design of the Data Diffusion and
Networking for Cardano Shelley*

AN IOHK TECHNICAL REPORT

Duncan Coutts
duncan@well-typed.com

duncan.coutts@iohk.io

Neil Davies
neil.davies@pnsol.com

neil.davies@iohk.io

Marcin Szamotulski
marcin.szamotulski@iohk.io

Peter Thompson
peter.thompson@pnsol.com

peter.thompson@iohk.io

Version 1.9, August 2020

Contents

1 Revision History 3

2 Executive Summary 3

3 Technical Summary and Motivation for the New Design 4

4 Introduction 5
4.1 Structure of the document . 6

5 Overview 6
5.1 Consensus constraints and design decisions . 6

5.1.1 Interleaving transmission and validation 7
5.1.2 Block/body splitting . 10
5.1.3 Stateful chain-following . 11
5.1.4 Storage subsystem . 12

5.2 Consensus components . 12
5.3 Network constraints and design decisions . 15

5.3.1 Stateful versus stateless protocols . 15
5.3.2 Concurrency . 17
5.3.3 Bearer and multiplexing . 17
5.3.4 Performance . 18
5.3.5 Binary formats . 18

5.4 Network libraries and components . 19
5.5 Related work (data diffusion) . 22

5.5.1 PolderCast . 22
5.5.2 Other blockchain systems . 22
5.5.3 Other related work . 22

*Supplemented by a Part 2 which is a Reference Document aimed at implementers of Shelly. https://

ouroboros-network.cardano.intersectmbo.org/pdfs/network-spec

1

https://ouroboros-network.cardano.intersectmbo.org/pdfs/network-spec
https://ouroboros-network.cardano.intersectmbo.org/pdfs/network-spec

5.6 Decentralisation constraints . 23
5.7 Decentralisation design . 25
5.8 Related work (decentralisation) . 28

6 Distributed consensus on a global scale 29
6.1 Characteristics of Cardano . 29
6.2 Fundamental requirements of Cardano data diffusion 29

6.2.1 Timeliness constraint . 30
6.2.2 Comparison with previous network implementations 31
6.2.3 Stateful connections . 33

6.3 High-level threat model . 33
6.3.1 Adversarial peers . 34
6.3.2 Eclipse attacks . 34
6.3.3 Resource exhaustion attacks . 34
6.3.4 Tier-1 actors . 35
6.3.5 Bearer-level attacks . 35

7 Analysis of alternative approaches 36
7.1 Dandelion . 36
7.2 Kademlia . 37
7.3 PolderCast . 38
7.4 Summary of comparison . 39

8 Operational environment and constraints 40
8.1 Data diffusion targets . 41
8.2 Fundamental tradeoffs . 41
8.3 Adversarial power and knowledge . 42
8.4 Stake distribution . 42
8.5 Graceful degradation . 43
8.6 Backward compatibility and extensibility . 43

9 Key design decisions 43
9.1 Stateful implementation . 44
9.2 Peer-with-peer . 45

9.2.1 Validated forwarding . 45
9.2.2 Demand-driven protocols . 46

9.3 Network architecture . 46
9.4 Development approach . 47

9.4.1 Session Type Framework . 47
9.5 Point-to-point bearers . 48
9.6 Demand-driven spanning tree . 48
9.7 Protocol framework . 49

9.7.1 Compositionality . 49
9.7.2 Structured information exchanges . 50
9.7.3 Protocol polymorphism . 50

9.8 Performance assessment and optimisation . 51
9.9 Summary response to threats . 51
9.10 Bootstrap . 51

10 Outstanding and unresolved issues 52
10.1 Cold/black start scenarios . 52
10.2 Resources and decentralisation . 52

2

11 Annexes 52
11.1 Business requirements . 52

11.1.1 Network connectivity . 53
11.1.2 Network performance . 55
11.1.3 Distributed System Resilience and Security 56
11.1.4 Network decentralisation . 57

11.2 TCP RPC response behavior . 57
11.2.1 Time to transmit a block of given size across given latencies 57
11.2.2 Examples of TCP/IP window opening between London and Sydney . . . 59

11.3 Model of network scaling . 60
11.4 Performance model of Ouroboros Praos . 60

11.4.1 Distribution of leadership . 61
11.5 Comparison with general overlay networks . 63
11.6 Time synchronisation constraints . 64

11.6.1 Leap seconds . 65
11.7 Ouroboros Network Components . 66

11.7.1 Typed Protocols . 66
11.7.2 Network-Mux . 67
11.7.3 Ouroboros-Network . 68
11.7.4 Simulator environment IOSim . 69
11.7.5 Testing Strategies . 71

References 71

List of Tables

2 Data diffusion budgets . 30
6 Transaction size as a function of block size and transactions per second 42
13 Unrestricted Window Size . 58
14 Large max window size (near default maximum) 58
15 Medium max window size (near default) . 59
16 Per-hop budget for data diffusion . 60
17 Size of spanning tree as a function of depth and node valency 61

1 Revision History

Version Date Change Reason

1.5 2019-10-14 Review Internal document shared with selected reviewers.
1.6 2020-05-21 Revised Preparation for external publication.
1.7 2020-05-28 Revised Edits to remove irrelevant and redundant material.
1.8 2020-08-05 Revised Resolving remaining points and correcting headings.
1.9 2020-08-09 Format Converted from Google doc to LaTeX (via pandoc).
1.9.1 2022-08-29 Revised Revised Gossip definition - renamed to ”Peer Sharing” .

2 Executive Summary

Purpose of document. We explain the technical requirements and key constraints for the
networking layer of the Cardano Shelley implementation of Ouroboros Praos. The key functional

3

role of this layer is the data diffusion of blocks, transactions and(and other information to be
shared) in Cardano Shelly. The general design was created to meet the likely needs of highly
distributed, publicly facing PoS blockchain system in general.

The technical requirements are expressed in terms of the key business requirements provided
at the project’s outset then refined with the IOHK business team.

We give design requirements, compare with existing protocols, and describe the rationale
for the solution adopted by the IOHK Networking Team.

Who the original was for. It was intended to provide a semi-technical, high-level overview
of the Cardano Shelley networking layer to inform strategic decision making and to provide
confidence in the proposed networking implementation. This is supplemented with a detailed
technical analysis explaining the design and implementation to the Engineering and Quality
Assurance team.

Where does it fit in the overall documentation scheme (dependencies, technical/management
etc)? We build and expand on the design requirements from the Ouroboros Praos paper. It
links with the Shelley Ledger specification.

The networking solution is being deployed as part of the Shelley mainnet implementation,
linking with the ledger, wallet and other implementations. Design decisions will also be used
to inform the future testnet implementations, as appropriate to ensure the necessary rapid
deployment. The document will be used to derive information for subsequent testing and
deployment.

Achievements and Status. The business requirements necessitated a bespoke protocol design,
compatible with hard real-time concerns, security concerns, and a globally distributed network.
This is a novel, technically complex issue. The resulting implementation is carefully designed
but relatively simple. It has been validated, substantially implemented and tested.

3 Technical Summary and Motivation for the New Design

The networking requirements for a Proof-of-Stake (PoS) system, such as Ouroboros, differ from
those of a Proof-of-Work (PoW) system, such as Bitcoin or Ethereum.

In PoW, adversaries must expend hashing power, which honest players can check in a cheap
and stateless way. Honest nodes in a PoS system lack this advantage, which tips the balance
towards the attacker, so it is necessary to mitigate this with careful design. Notably, off-the-shelf
overlay network solutions tend not to consider such attacks. Existing solutions have been
assessed, but the cost of retrofitting them to address the new balance of power between the
adversary and honest players above is easy to underestimate and they would require substantial
modification which would negate any advantages of code reuse. This is a major reason we
undertook a from-scratch development.

Our design is simple and modular and interleaves the three parts of the Ouroboros dis-
tributed consensus algorithm: chain transmission, validation and selection. The design uses a
stateful chain synchronisation protocol1, both for the node-to-node case and for the case of local
IPC with wallets/explorers etc. The design is extensible for future flexibility, and has a plug-in
consensus algorithm to support the anticipated evolution of Ouroboros. It includes a network
protocol framework that currently is used for three application-level protocols. Protocols can be
added or changed for future requirements. Protocols can be pipelined to enable effective use of
network resources (all the node-to-node protocols are fully pipelined), and have been designed
for decentralisation. The framework is reused for local client IPC, such as the explorer backend.

1We follow a stream processing paradigm adapted for the eventual finality behaviour of blockchain systems.

4

The implementation has been kept simple to minimise complexity and attack surface. It is
fully integrated with the rest of the node and is working in the Shelly mainnet. At the time
of writing only one component has not yet been deployed, namely the peer selection and
subscription management (outline design in Section 5.7).

4 Introduction

A blockchain is a mechanism for computing distributed consensus on a global scale, i.e. coming
to global agreement on a sequence of events, in the presence of ‘bad actors’ trying to bias or
disrupt the system, and without a centralised authority.

Distributed consensus algorithms fall into two main camps: proof-of-work (PoW) and
proof-of-stake (PoS).

• Proof-of-work algorithms, like Bitcoin’s, are a race to ‘mine’ blocks. The winner gets to add
a block on the blockchain, and collects rewards for doing so.
Miners consume vast computational resources as they compete on a global scale.

• Proof-of-stake algorithms take turns to produce blocks in proportions that are determined
by the users’ stakes in the system.
Blocks can be produced efficiently and frequently, improving throughput and settling
time2, but at the risk of creating forks if a previous block fails to reach the next block
producer in time.

Cardano is a third-generation blockchain3 based on a new proof-of-stake consensus algorithm
called Ouroboros [BGKR17, BGK+19]. Cardano’s first implementation, Byron, was introduced
in September 2017.

Shelley is a full, modular, reimplementation of Cardano, organised into two main functional
components:

1. the data diffusion layer, which governs how data propagates between Cardano nodes, and

2. the consensus layer, which implements the Ouroboros algorithm and applies the ledger
rules.

Cardano is a distributed algorithm. Consequently in the Shelley implementation each
network node runs a Shelley instance, whose functions interact via the data diffusion component.

This document describes, for the Shelley implementation of Cardano:

1. the goals and constraints of the data diffusion component,

2. the design decisions that were made in meeting these goals and constraints, and

3. why those particular decisions were made.

A note on terminology: while “data diffusion” and “network” mean slightly different
things – technically, data diffuses across a network – for simplicity we may use these terms
interchangeably in this document.

2The amount of time that must pass for the consensus to be considered immutable.
3Bitcoin was the first generation. Ethereum is an example of a second generation blockchain.

5

https://cardanoroadmap.com/en/byron/

4.1 Structure of the document

This document is structured as follows:

1. In Section 5 we describe the overall implementation of the Ouroboros algorithm, and
summarise the key constraints and design decisions, in particular how validation and
forwarding have to be interleaved in order to deliver a robust implementation.

2. In Section 6 we discuss how the constraints of the physical world impact on a distributed
ledger system and also the implications of running an autonomous collaborative algorithm
with hard real-time constraints on a global-scale. We consider the threats that such a system
faces because it is global and open, including the possibility of adversarial nodes within the
system and the vulnerability of being on the global Internet, such as exposure to DDoS
attacks.

3. In Section 7 we consider a range of published approaches to transferring information
between nodes and the extent to which they are able to meet the constraints and deal with
the threats that were discussed in Section 6.

4. In Section 8 we enumerate the operational environment and the constraints that are derived
from the business requirements from Section 11.1.

5. In Section 9 we discuss our development approach and design decisions.

6. In Section 10 we look at currently unresolved issues.

7. In the appendix we provide: the previously-agreed business requirements (Section 11.1);
numerical models of TCP performance (Section 11.2), the network scaling (Section 11.3),
and the leadership distribution in Ouroboros Praos (Section 11.4); and give a detailed
description of the software components that are required by our solution (Section 11.7).

5 Overview

This document concerns the requirements, constraints and design decisions of the network layer
of Cardano. However, the network layer design is fundamentally shaped by

• the constraints and design of the Cardano consensus layer, and

• keeping extensibility in mind for the product roadmap.

Thus far, the network parts exist almost exclusively to serve the needs of the consensus
implementation4. So to understand the design constraints and design decisions for the network
layer implementation we must first consider the requirements, constraints and design decisions
of the consensus layer implementation.

5.1 Consensus constraints and design decisions

Cardano as a cryptocurrency system fundamentally relies on an implementation of Ouroboros
[BGKR17, BGK+19]. The underlying properties of Ouroboros5 ensure, by design, that Cardano
users can submit valid transactions and can rely on them being incorporated into the immutable
prefix of the cryptocurrency ledger. This is despite the system being open (accessible to those
with minimal or no stake) where adversaries may attempt to steal money or cripple the system,

4Although they have been written in a modular way to facilitate extension and re-use.
5Specifically, liveness and persistence – see below.

6

and operating over the public Internet where the network load, bandwidth and latency may be
highly variable and unpredictable.

It follows that a key part of the commercial offering is that Cardano, being based on an imple-
mentation of Ouroboros, can actually achieve these goals and so provide a sound underpinning
of the cryptocurrency, while operating on the public internet network with a public IP and thus
fully exposed to bad actors.

The key requirements for the Ouroboros implementation come from the Ouroboros specifica-
tion as embodied in the published and peer-reviewed papers, and from business requirements
(see Section 11.1) including quantitative non-functional requirements.

There are three levels of refinement:

1. The underpinning academic papers (e.g. [BGKR17, BGK+19]) that give a mathematical
description of the algorithm;

2. An implementation design that:

(a) Can be shown equivalent to the mathematical description (informally at first, formal
proof to follow as and when time permits);

(b) Can be implemented in a real-world distributed computational setting;

(c) Does not introduce new possibilities – with respect to the mathematical description –
for attackers to disrupt or subvert the system, or at least includes mitigations for any
vulnerabilities that it does introduce;

3. A software implementation that follows from the implementation design;

(a) The correspondence between the two being checked through tests, property checking
etc.;

(b) That is efficient, modular and easy to maintain; and

(c) That does not introduce any further possibilities – with respect to the implementation
design – for attackers to disrupt or subvert the system through refinements of or
changes to the design, or at least includes mitigations for any that it does introduce.

This section focuses on the first refinement step, from the mathematical description to the
implementation design.

The mathematical description of the Ouroboros algorithm is not intended to be a directly
implementable design. For example, transmitting entire blockchains is impractical, but is a valid
specification of an outcome to be achieved by a practical design. Substantial work was required
to refine the mathematical description to an implementation design.

Ouroboros establishes strong properties of progress (liveness) and persistence6 , based on
surprisingly weak assumptions [BGK+19, Section 1], and in an environment with potentially
powerful adversaries. This environment combined with the capabilities of the adversaries
collectively comprise the threat model (see Section 6.3).

5.1.1 Interleaving transmission and validation

The Ouroboros specification Ouroboros as an algorithm specification is elegantly modular,
comprising:

1. Reliable chain broadcast; followed by

2. Chain validation; followed by

6These two properties are the underpinning of the Cardano cryptocurrency ledger.

7

https://iohk.io/research/papers/

3. Chain selection

All current members of the Ouroboros family have this same structure, which suggests using
a parameterized consensus design that can be instantiated for BFT, Praos and the other variants7

that are used in Cardano Byron and Cardano Shelley.
In the specification, the reliable chain broadcast is expected to achieve delivery within fixed

deadlines. In practice this is, of course, impossible: delivery with high probability is the best
that can be achieved. Failure to meet deadlines in the typical case or for an extended period of
time is fatal to the system, but occasional failure simply eats into the “adversarial stake budget”.
IOHK’s Ouroboros researchers have set a practical target of achieving the deadline in 95% of
cases.

A simple broadcast implementation is impractical because adversarial players can use it
to DoS the system with invalid chains. By deliberately over-using the broadcast mechanism,
adversarial players can consume the system’s limited broadcast capacity to the point where
chains sent by honest players consistently fail to reach the next slot leader within the required
deadline.

It is also impossible to make a simple alteration to a broadcast algorithm to filter out bad data
sent by adversarial players: A simple alteration to a broadcast algorithm would require a stateless
validation check. However, no known practical8 stateless check can exclude invalid chains for
Ouroboros. The validation check for Ouroboros relies on having a full and (nearly) up-to-date
ledger state. Having a full ledger state depends on the other two pieces of Ouroboros func-
tionality, the chain validation and chain selection. Thus, to validate new chains/blocks, we are
required to run all of the consensus implementation. We cannot, therefore, use a straightforward
modification of a broadcast algorithm.

Therefore, existing off-the-shelf implementations of the broadcasting paradigm (pure gossip
and/or pub/sub) are hard to reuse; any form of broadcast in a PoS context opens up trivial
DoS attacks, in which the asymmetric power of broadcast is weighted in favour of the attacker.
Mitigating that problem is impossible in practice, since every end user would be susceptible to
attack. At best we can use broadcast as an inspiration for the overall consensus design.

As if validation was not challenging enough, broadcast can also be used by adversaries
who become (or have recently become) slot leader in order to send an unbounded number of
valid chains. Avoiding this requires the Ouroboros chain selection and chain validation features,
which can be used to reduce the number of chains broadcast to within a plausible bound that
could fit within the available resources.

Consequences of PoS vs PoW A crucial difference exists between PoS and PoW at the network
layer, with significant design consequences: in PoW-based systems, proof-of-work itself gives
honest nodes an advantage over adversarial nodes (as listed below), and this enables system
designs that are simpler and more modular. There is no such advantage for honest nodes in
PoS-based systems such as Ouroboros.

In PoW systems:

• The number of different block headers with a valid PoW that can be constructed (over any
given period of time) is bounded by the total available hashing power in the world. In
Bitcoin for example this is one header every ten minutes on average.

7The new Byron-compatible consensus algorithm is Ouroboros “Permissive” BFT, a custom variation designed to
handle the transition from Ouroboros Classic to Ouroboros BFT. The Shelley consensus algorithm is the sequential
composition of Ouroboros Permissive BFT followed by the combination of Ouroboros Praos with a transitional BFT
overlay schedule.

8There is of course an impractical stateless check, which is to validate the entire broadcast chain from the Genesis.

8

• The header PoW can be checked with little computational cost. This does not require any
significant or recent state, only a vaguely-recent lower bound on the hashing difficulty
value is needed.

• Such a cheap and simple test can be easily integrated into existing distributed algorithms
such as broadcast algorithms.

By contrast, with PoS in Ouroboros:

• There is no equivalent of the PoW check that is expensive for the adversaries and cheap for
the honest nodes: adversaries can create many apparently valid or actually valid candidate
headers or whole chains.

• Block headers can only be fully validated with access to a very recent copy of the full
ledger state, and the other preceding headers – which is not a simple stateless check.

• Having the full ledger state relies on the other two pieces of Ouroboros functionality: chain
validation and chain selection.

Thus we conclude that the Ouroboros broadcast functionality cannot be implemented in
isolation, and that an integrated design is required that combines all three areas of Ouroboros
functionality: chain broadcast, validation and selection.

Bounding the resource use of honest nodes An important consideration in making a more
detailed design for Ouroboros stems from the nature of the proof of the Ouroboros properties:
the proof can be thought of as starting with

“For all possible actions of the adversaries . . . ”
As we refine our design by making more detailed and realistic the mechanisms by which

(honest and adversarial) nodes interact, so we also expand the threat model, because the more
detailed design gives adversaries more ways to interact with the honest nodes.

For example, a single abstract broadcast interaction may be replaced by a collection of
RPC interactions running atop layers of lower level protocols, each with their own complex
interactions. We discussed in Section 5.1.1 the problems that arise when the resource use of
honest nodes is under the control of adversaries; this too can only get worse during design
refinement or implementation, as we provide new mechanisms to interact.

Thus, a fundamental constraint when evaluating consensus designs is to find one with a
plausible argument for bounding the resource use of honest nodes, given all the possible actions
of the adversary that are enabled by the design – otherwise, the security guarantees of the
mathematical consensus algorithm are negated. This is a high bar – even with the caveats of
“plausible” and “informal”. This contrasts with the orthodox approach, which only solves the
simpler problem of solving or mitigating against known classes of attack9.

After much effort evaluating various designs that incorporated some aspect of broadcast (e.g.
broadcast of block headers), we were unable to find a design for which we could make even
an informal resource bounds argument. The designs we studied also tended to be excessively
complex.

In abandoning the notion of broadcast we move from a situation in which a participating
node receives information from all other nodes to one in which it receives information from only
some of the other nodes, which we refer to as its ‘peers’. Nodes are then connected in a graph
through which information flows.

9For example, much of the critique of Kademlia (ours in Section 7.2 and others’ [MHG18]) comes down to the fact
that it followed the orthodox design approach. It does not start with a threat model and establish positive results.
Many academic papers on Kademlia establish negative results: they find flaws and then fix or mitigate them. We
must however suspect that there are more flaws to be found, because none establish a positive result.

9

Our final design thus interleaves (in a sense made more precise below) the three parts of the
Ouroboros algorithm functionality:

• chain transmission,

• chain validation and

• chain selection.

These three parts are used at every node in the graph that indirectly connects all (or at least
most) nodes. This design turns out to be relatively simple and could plausibly be refined further
to (at least informally) establish resource bounds.

Our design interleaves Ouroboros functionality in the following sense: along any path
through the graph of nodes, there will be multiple rounds of chain transmission, validation and
selection, with one round per hop in the path. After the first design refinement10 step, our high
level algorithm is as follows:

• each node transmits its current chain to its immediate neighbours;

• each node validates the incoming chain from each neighbour;

• each node does chain selection on the candidate chains;

• the selected chain becomes the node’s new current chain, ready to be transmitted to its
neighbours again; and

• when a node is a slot leader, it extends its own current chain with the new block.

By contrast, recall that in the original mathematical description of the algorithm, the chains
are broadcast to all nodes, and then each node locally performs chain validation and selection
over all the chains that it receives.

It is worth noting again that this design is not ‘broadcast’ in the classical sense, and hence,
as discussed earlier in Section 5.1.1, existing broadcast implementations (including multicast
and pub/sub) cannot easily be adapted to provide an implementation of this design. It is
nevertheless a relatively simple design and can be implemented directly, with some further
essential refinement.

5.1.2 Block/body splitting

An essential and uncontroversial design refinement in any blockchain implementation is to
separate block headers and block bodies:

• If blocks can be almost fully validated in O(1) time based on looking at only a small fixed
size block header, then honest nodes can validate candidate chains with a small bounded
amount of work.

• It also enables a design where a node can see blocks available from many immediate
peers but can choose to download each block body of interest just once (from a peer of its
choosing from which it is available). This saves network bandwidth11.

10This design is an intermediate design refinement. Like the high level Ouroboros algorithm, it still uses elements
that are not directly implementable (like transmitting whole chains). Further refinements will attain directly
implementable design. This refinement process is a standard technique for modular design, allowing design options
to be considered in relative isolation. This modularity is especially helpful if and when we apply formal methods to
prove correctness of low level designs with respect to high level specifications.

11We also exploit this to choose a peer that we have reason to believe will deliver the block soonest.

10

In the case of Ouroboros, we can pack all the cryptographic consensus evidence into the
block header, leaving the block body containing only the ledger data, and check that the block
has been signed by a node that is the slot leader. If we validate this in the context of a chain of
headers12, then we can establish this is a plausible candidate chain, thus we eliminate several
potential resource draining attacks.

So the design at this stage involves transmitting chains of headers rather than whole blocks,
and using a secondary mechanism to download block bodies of interest13.

5.1.3 Stateful chain-following

The next design decision revolves around how to implement the transmission of chains of
headers in a resource-bounded way.

The general approach is to take advantage of the fact that we do not need to transmit whole
chains if most headers are already on the destination node. Thus, we need a way to synchronise
chains of headers, and interleave receiving headers and validating them. The interleaving
resists asymmetric resource attacks, by minimising and bounding the resources expended before
discovering an invalid header.

Alternatives considered included chasing chains from the tip, or establishing an intersection
and chasing from there. The chosen design is a connection-oriented application-level protocol
where the producer side14 keeps track of the intersection point between the producer’s chain
and the consumer’s copy of the same chain. Consumer and producer can operate in bounded
resources and the consumer can progress even with concurrent forks in the chain – again
considering the power of the adversary.

This protocol15 is application-level in the sense that it is part of the consensus application-
level logic and relies only on exchanging an ordered sequence of messages. It is simple in the
sense that the consumer can follow a very simple algorithm using the protocol to achieve its
ends of keeping in sync with the producer’s chain.

Alternative high-level protocols for chain synchronisation were considered but none had
a better combination of simplicity, efficiency and a clear argument for working in bounded
resources. In particular ”stateless” versions of chain synchronisation are possible but are either
more complex or are less efficient in both the typical case and adversarial cases. The ones that
have been considered also suffered from asymmetric resource attacks that can be avoided in the
stateful version. See Section 9.1 for more details.

It may appear unfortunate that we have chosen a stateful protocol since stateless protocols
enjoy wider support in existing protocol frameworks such as HTTP implementations16. Adding
the required support on top of an existing stateless protocol amounts to making it stateful
e.g. by adding the concept of a session. It is worth noting that stateless protocols can only
support arguments for worst case resource bounds whereas stateful protocols can also support
arguments for worst case amortised resource bounds. It is often easier to find effective algorithms
that have amortised bounds. In the final design we rely on amortised bounds for two of the
three consensus protocols.

It is perhaps not surprising that a stateful protocol is a natural fit. A blockchain-based
distributed information system is close to a distributed information system based on the modern
paradigm of event sourcing, or event stream processing. Architectures based on event sourcing
tend to use a stateful or connection-oriented network protocol to join and then incrementally
consume the sequence of events. This involves the event stream server maintaining state to

12We also need the ledger state, and there are some other technical constraints.
13Blocks can be fetched from any peer who announces it, or from multiple sources if desired.
14The ‘producer’ is the side that has new data, and the ‘consumer’ is the side that may want it.
15Meaning an algorithm where two parties maintain local state and exchange information.
16Of course TCP is a connection-oriented reliable sequential protocol, which supports all manner of higher level

stateful protocols. It is undoubtedly the most widely deployed, supported and used protocol on the public internet.

11

https://en.wikipedia.org/wiki/Connection-oriented_communication
https://en.wikipedia.org/wiki/Event-driven_architecture

know where in the sequence the consumer is. This allows it to send exactly the right events,
and to do so promptly as soon as new events arrive. This architecture is very similar to a
design for a consensus node. The “events” are the blocks. The consumer applications find their
point on the chain and incrementally move forward, maintaining local state17 and reacting as
appropriate. The key difference between normal event sourcing and consuming a blockchain
is that normal event sourcing has immediate finality of events, whereas blockchain algorithms
such as Ouroboros have eventual finality, meaning that there are forks that consumers have to
follow. A stateful protocol for consuming a sequence of events can be adapted for eventual
finality relatively easily. The simplest possible version of the chain synchronisation protocol is
essentially this, and our final version is not significantly more complicated.

5.1.4 Storage subsystem

This is not immediately obviously connected to the network design decisions, but there are
some areas of contact.

A design decision with wider consequences that is motivated by the storage subsystem is
to identify points on the blockchain not by their block hash but by the pair of the block’s slot
number and the block hash.

This helps with the design of the chain storage subsystem. The block points are ordered
by time in the same order as the chain and can be used as a physical pointer to near to where
the data can be found whereas block hashes have no useful order. This eliminates the need to
maintain a massive mutable index of all block hashes. This in turn allows the entire storage
system to be designed without a traditional database and to use only simple file operations,
and in particular to exclusively use immutable append-only files. This has significant I/O
performance and reliability benefits, however the details are out of scope for this document.

A consequence of using points to identify blocks internally is that the network protocols
must also use points when referring to blocks, such as in the chain synchronisation and fetching
of blocks. This might sound like leaking an implementation detail but it in fact has advantages
for the network layer too. It gives us the property that points can be ordered in the same order as
the blocks appear in the chain. We take advantage of this, in particular in the implementation of
in-memory fragments18 of chain headers where it allows for a simple and efficient representation.

5.2 Consensus components

In addition to chain synchronisation, the consensus implementation needs to:

• download block bodies;

• validate new transactions;

• forward transactions towards block producing nodes; and

• use chain synchronisation, block download and transaction submission with multiple
upstream and downstream peers at once.

None of these interactions needs to be synchronised with any of the others. The high level
design can support a fully asynchronous implementation approach.

The high level consensus design following the various considerations above consists of the
following components:

17Ledger state in the case of a validating consensus node, or other application-specific state in the case of other
applications such as wallets.

18The in-memory chain fragment data structure is used throughout the network and consensus layers. It is briefly
covered in Section 11.7.3. The implementation represents the sequence of headers using a finger tree data structure
that is instantiated for block headers such as to offer efficient O(log n) operations based on slot numbers and block
numbers, in addition to the normal efficient sequence operations.

12

http://www.staff.city.ac.uk/~ross/papers/FingerTree.html

• The chain database component wraps several other sub-components and covers several
areas of consensus functionality:

– It stores the node’s current chain and the corresponding ledger state.

– It manages the on-disk persistence of both pieces of state.

– It maintains a set of blocks that have been recently downloaded but do not yet link
onto the current chain, or are part of a recent fork that is not the current chain.

– It performs the final stages of block validation: validating the contents of blocks
according to the ledger rules.

– It performs the final chain selection and adoption of a new chain as the current chain,
keeping the current ledger state in sync.

– It provides read access to the current chain and ledger state.

– It provides a method to add new blocks to the database, which also triggers block
body validation and chain selection.

• The chain sync client component engages in the consumer side of the chain synchronisation
protocol to continuously get the candidate chains of headers from the immediate upstream
peers, interleaved with chain header validation.

• The block fetch component selects plausible candidate chains based on the available valid
chains of headers, and decides which block bodies to download from which peers (the
block fetch logic). It uses the block fetch mechanism for downloading the selected blocks
from the selected peers (the block fetch client). The implementation of this component sits
within the network layer package.

• Two simple components, the chain sync server and block fetch server, provide the producer
side of the chain synchronisation and block fetching. These draw their data from the chain
database and allow downstream peers to synchronise a copy of the node’s current chain.

• The mempool component stores and manages a set of valid pending transactions. It deals
with keeping the mempool in sync with the current ledger state. It also deals with
validating new transactions that are added to the mempool.

• The tx-submission client component consumes transactions from the mempools of down-
stream peers and tries to add them to the local mempool. This enables downstream peers
to submit their transactions to this node. It deals efficiently with the common case that the
same transaction is available from many peers.

• The tx-submission server is a simple component to provide the producer side of the transac-
tion submission system. This enables the node to submit transactions to other upstream
peers.

• A block forge component creates new blocks when the node becomes the slot leader.

Each of these components is illustrated in the diagram below, which illustrates the key data
flows between the components. (The diagram also distinguishes between passive state and
active threads that interact with the state, but this distinction is unimportant for the high level
summary.)

13

The validation and chain selection functionalities of Ouroboros are in four separate places:

1. Peer chain header validation is performed in the chain sync client. This covers all the
Ouroboros chain validation protocol checks, but none of the checks on the block bodies.

2. Initial selection of plausible chains takes place in the block fetch logic. It considers all the
valid chains of headers maintained by the chain sync clients, and looks for ones that are
longer than the current chain. It then picks one or more chains to download block bodies
of. It picks on the basis of a combination of prioritising the longest chain, the available
network resources and the expected ability to complete within deadlines. This should be
considered part of chain selection.

3. The evidence connecting the block header to the block body is checked by the block fetch
client upon completing the download of the block body.

14

4. The final block body (ledger) validation and chain selection are performed in a single
integrated algorithm in the chain database.

The fact that these are split up is deliberate. The checks are moved to the earliest point in the
operational cycle where the data is available, and where the least resources have been expended.
This helps build an argument about bounded resource use and preventing asymmetric resource
attacks.

Some parts of the network layer are thus inherently specific to the requirements of the
consensus design19, a trade-off that is forced upon us by operating in an environment where
the adversary has so many cheap options20 but the other parts are as general as reasonably
possible. This provides more modularity and flexibility and makes the code amenable to rigorous
component level testing and it also simplifies the review process (whether internal or external).

5.3 Network constraints and design decisions

There is no clear line between the consensus and network layers of an Ouroboros design. After
all, Ouroboros itself is a high-level message-based networked protocol. But generally speaking,
the consensus layer provides the policy and the network layer provides the mechanisms:

• The consensus layer handles issues deriving from the Ouroboros algorithm, whereas

• the network layer handles issues of effective use of network resources.

Both layers must be concerned with adversarial behaviour and asymmetric resource at-
tacks. The block fetch logic component is an exception in that it has aspects of both layers:
implementing parts of chain selection, but also effective use of network resources.

The final high level consensus design has information exchange requirements on three areas:

1. chain sync: a requirement to support a stateful application-level protocol for synchronising
chains of headers;

2. block fetch: a requirement for downloading block bodies; and

3. tx submission: a requirement for transmitting new transactions from the mempool in one
node to that of another.

5.3.1 Stateful versus stateless protocols

Requirement 1 above (to support a stateful connection-oriented application-level protocol)
implies some notion of connection or session.

This is straightforward by layering on top of a lower level connection-oriented protocol, or
as noted above, we could also add a notion of session to a stateless protocol (at a price of more
complex resource management).

This design decision is discussed in Section 9.1. The summary is that there are not as many
off-the-shelf solutions available as it might first appear, since most protocol implementations
are designed for use within a data centre (thus within a controlled operational environment)
and not in the adversarial environment of the public Internet. There does, however, exist a good
stateful option: TCP; and there is also a good stateless option: HTTP.

TCP and HTTP are common and well-supported, with robust and reliable software libraries
and tools. In terms of lines of code and maintenance cost, there is little difference between

19Though the implementation is highly parametric and can support the different protocol and ledger checks
needed to implement many instances of the Ouroboros family.

20Again, contrast this with PoW where to get any higher than low-level network attacks using blocks, the adversary
must provide a PoW which immediately shifts the resource argument in favour of the defenders.

15

approaches based on these two protocols. Our chosen solution has two components layered on
top of TCP, each of which is less than 1000 lines of code.

To get to a roughly equivalent level of functionality with an alternative solution (based on
exclusively stateless application-level protocols) on HTTP would likely involve picking existing
libraries such as ”servant”, that are built on top of the ”wai” and ”warp” HTTP server stack. That
would indeed save 2k lines of code, but there would then be tens of thousands of extra lines of
code to audit. There would also be much more unnecessary functionality and network-exposed
surface area for attackers to exploit.

A further constraint stems from the business requirement to support block-producing nodes
on consumer-grade network connections. Such nodes are usually behind firewalls. In practice
this means they can only establish outbound TCP connections, because inbound TCP connections
are blocked by the firewall. Protocols such as HTTP establish new TCP connections for each
new batch of requests, and those connections can only be used for requests in one direction21.
This means that nodes behind firewalls can only make HTTP requests; they cannot receive them.
This places a general limitation on the design of higher level consensus protocols, or requires a
special asymmetric case in the design to cope with such nodes. For example, in an RPC based
design layered on top of HTTP, RPC interactions can only be initiated by the node behind the
firewall. This

• introduces an asymmetry into the design, and

• makes it harder to push notifications promptly, such as block header announcements,
which puts “home” stake pools at a further disadvantage in meeting the Ouroboros timing
constraints.

By comparison, with a bi-directional connection-oriented protocol such as TCP, a connection
can be established by the node behind the firewall but once established the connection can be
used in both directions. This allows the application level protocols to be fully symmetric, which
is the natural design for a peer-to-peer rather than client/server system.

There are also significant advantages to being able to use stateful application level protocols.
Again, as noted above, stateful protocols can rely on an amortised analysis for their resource
bounds, which simplifies the design of protocols that are (or can be made) resistant to asymmetric
resource attacks. For example, in an HTTP REST API, if there is a moderately expensive operation
that must be available to be used as part of normal peer interactions then it is hard to mitigate
an attack where that API is used repeatedly – without that mitigation also affecting legitimate
users of the API22. In a stateful protocol that same interaction can be tied to the previous actions
of the same peer. This enables mitigations that can add extra cost to the attacker, or can slow the
attacker down without slowing down other legitimate peers.

Ultimately, the choice of stateful or stateless chain synchronisation protocol is a design
decision on which reasonable people can and do disagree. Maintenance costs are similar either
way and both approaches allow future flexibility, but

this design decision in the consensus layer cannot easily be changed later.

The stateful chain sync pattern is relied upon in many parts of the consensus design and
implementation: the chain database, the peer interactions and the local client IPC. Indeed, it is a
unifying aspect of the design that simplifies many aspects of the implementation.

An additional feature of adopting a contention-based, stateful association with a peer is that,
for the duration of that connection, we can integrate information derived from that connection
to inform local decision making.

21HTTP persistent connections are a performance optimisation, and cannot be used for HTTP requests in the
opposite direction. HTTP2 does allow some degree of server-push, but it is not a symmetric bi-directional connection.

22For example through some form of rate limiting.

16

5.3.2 Concurrency

Recall, from the beginning of Section 5.3, that the consensus information exchange requirements
cover three areas: chain sync, block fetch and tx submission. Each relationship with a direct
upstream and downstream peer needs to cover all three areas, however there is no requirement
for any synchronisation between them when talking to a single peer. They are independent
when talking to different peers, and at least semi-independent for a single peer.

Concurrency is of course a technique to structure programs in a modular way, for those
programs that need to interact with multiple external agents [Mar13, Chapter 1]. It is a natural
design decision to use concurrency for talking to independent peers. The same motivations lead
to the decision to handle the three areas (chain sync, block fetch and tx submission) concurrently
when talking to a single peer.

Using concurrency allows each of these three features to be handled in a modular way. It
results in three simple protocols rather than one complex one, and a clear way to add new
protocols or upgrade existing ones. Chain sync, block fetch and transaction submission are
independent application-layer protocols that all run concurrently as required by the consensus
layer.

We thus end up with one Haskell thread per application-level protocol per upstream and
downstream peer. In extreme cases, this could be a large number of threads but managing this
is well within the capabilities of the GHC runtime system [Mar13, Chapter 15].

5.3.3 Bearer and multiplexing

We must pick some underlying lower-level bearer protocol over which to run the collection
of application-level protocols. Having decided to support stateful application level protocols
we must either pick a stateful lower-level protocol or add session or connection support to a
stateless protocol. The clear and obvious choice is then to use TCP. TCP is the best supported
internet protocol when it comes to the thorny issues surrounding consumer NAT and firewall
hardware: outbound TCP connections can almost always get through. It would be plausible
to use UDP-based options but that would either require significant additional development
work23, or it would be necessary to rely on some relatively new UDP-based protocols with
immature implementations. Similarly, adding sessions to another higher level protocol such as
HTTP would add complexity, but would have little benefit.

The only significant drawback of selecting TCP is that we wish to run multiple application
level message-based protocols with a single peer concurrently, whereas TCP supports a single
reliable ordered byte stream. Adapting stream-based communication to provide message-based
communication just needs simple framing. To support concurrent protocols requires either
using multiple TCP connections or else running the collection of protocols over a single TCP
connection. Using multiple TCP connections requires more resources24 and also has other
disadvantages such as more complexity in fully disconnecting from a peer that is deemed to be
adversarial.

The standard solution to this well-known networking problem is to use multiplexing. That
is, at one end we multiplex by chopping up the data streams from the individual protocols into
bounded sized chunks and interleave them on the single TCP data stream, and at the other
end we demultiplex to reverse the transformation. The abstraction that is presented by the
multiplexer is essentially the same as that of TCP itself: a reliable ordered byte stream. This is
described in more detail in the Section 11.7.2.

23And take on future risk as telecommunications start deploying Carrier Grade Nat to migitage IPv4 address
exhaustion.

24Kernel buffers, file/socket handles etc.

17

https://en.wikipedia.org/wiki/Carrier-grade_NAT

5.3.4 Performance

Performance is a very important consideration for the network layer, deriving from:

1. the Ouroboros timing constraints;

2. the business requirements to support certain latencies and throughputs;

3. the business requirement to support worldwide distribution; and

4. the requirement to support block-producing nodes on consumer-grade network connec-
tions.

In the context of networks, performance amounts primarily to trying to use the network
resource effectively whenever possible. Time that is expended without sending or receiving
data is time that can never be regained. Point-to-point connections over a network can very
crudely25 be characterised as having a certain bandwidth and latency. Network connections
do not support bursts of traffic well, since they have a maximum bandwidth. Full network
utilisation requires that they be used at their maximum bandwidth continuously.

Network latency poses a significant challenge to effectively utilising a network connection,
and this challenge tends to leak all the way up to the application-level protocols and application
design. Network latencies also vary considerably, with many orders of magnitude difference
between peers within a data center versus peers on other continents (see Section 11.2). Catering
for this very wide range of latencies requires careful design. Ideally, protocols should be capable
of adapting to the latency that is actually experienced, rather than being targeted to a specific
latency.

There are two major approaches to dealing with network latency: batching and pipelining.
Batching amounts to sending a large amount of data in one logical interaction, for example
requesting a multi-megabyte file over HTTP. This hides latency in the sense that the full end-
to-end round trip is amortised over the amount of data moved. Batching is relatively easy
to implement, though it does require changes in the application level protocols. Moreover,
picking the right batching size requires some care and thus becomes an application level concern.
Batching by itself cannot fully utilise a network connection on a continuous basis due to the
need to wait for the end of each batch. This improves as the batch size gets bigger, but there are
also negative trade-offs with large batch sizes. By contrast, a fully pipelined protocol can fully
saturate a network connection. Pipelining involves sending multiple messages back to back
without waiting for replies, and handling replies as they come in. The primary disadvantage of
pipelining is that it tends to complicate the data flow and control flow in the application26.

5.3.5 Binary formats

We must choose an encoding format for messages in the protocols. Choices include

• standardised text formats like JSON, and

• standardised binary formats like ASN.1, MsgPack, CBOR and those used by Thrift and
ProtoBufs.

The implementation (not just the encoding format) must be robust against untrusted input
from the network. Further considerations, in roughly27 decreasing order of importance, include:

25A much more precise characterisation is based on ∆Q, see [TD20].
26Surprisingly few HTTP client applications take advantage of HTTP pipelining for example.
27The order is of course somewhat a matter of opinion, and it by no means implies a strict lexicographical order for

evaluating different choices.

18

1. standardised format or not

2. stability of standard

3. availability of format documentation

4. availability of existing implementations

5. availability of existing implementations for 3rd party implementations

6. availability of existing support tools

7. having a schema language for documentation and validation

8. availability of schema tools

9. ease of forwards/backwards compatibility

10. encoding size

11. performance of encoding and decoding

12. minimising excessive code dependencies

There are several perfectly adequate choices that score well against all the criteria, including
one – CBOR (RFC 7049) – that is already in use in the system as the binary format for the
blockchain itself that scores well on all the criteria28. Reusing the same choice leads to significant
savings:

• reduces dependencies,

• simplifies documentation,

• reduces the cognitive load for developers,

• reduces audit costs, and

• minimises the maintenance burden.

This is true for the present Cardano implementation and any other compatible implementa-
tion. The present implementation uses an existing Haskell CBOR implementation that has been
tested and externally audited to deal robustly with untrusted input.

5.4 Network libraries and components

Following from the high-level design choices above, the network layer design consists of the
following libraries and components:

• A multiplexer component that carries multiple concurrent reliable ordered streams over a
single reliable ordered bearer such as TCP29.

• The typed-protocols framework for describing and using application level protocols, with
enforcement via Haskell types. This is a form of session typing. It also has direct support
for pipelining. It is described in more detail in this section below.

28Thrift and ProtoBufs do score better on the support tools, particularly schema tools, but the CBOR schema
schema language is standardised (as RFC 8610) and the validation tools are adequate and are already used in the CI
tests for the new Cardano implementation.

29It can use any reliable ordered bearer connection.This greatly aids testing, but also adds flexibility.

19

https://tools.ietf.org/html/rfc7049
https://groups.inf.ed.ac.uk/abcd/
https://tools.ietf.org/html/rfc8610

• An IO simulator library was developed for the purpose of testing the network and consen-
sus components. It is described in more detail in this section below.

• The three application level protocols (node to node):

– chain sync;

– block fetch; and

– tx submission.

These define the mechanism but not the policy for using these protocols. They are defined
using the typed-protocols framework.

• A connection handshake protocol used during the initial set-up of connections with peers.
It covers protocol version negotiation and checking compatibility of parameters like the
network magic30. This is also defined using the typed-protocols framework.

• A subscription manager component that decides when to make new outbound connections
to peers, which peers to connect to, and handles the process of doing so.

• A server component that handles accepting and managing inbound connections from other
peers.

• A block fetch component. This was also listed as a consensus component but because it
incorporates many concerns from the network layer such as achieving good network
performance it was developed by the network team and is included within the network
layer package. As mentioned previously this is a relatively sophisticated concurrent
component: it selects plausible candidate chains based on the available valid chains of
headers, and decides which block bodies to download from which peers. It provides the
policy for the block fetch protocol.

• A local tx submission protocol which is tailored to local clients (wallets, explorers, etc.).
Since it runs in a trusted environment it can be simpler, which reduces implementation
complexity for clients. It also gives immediate verbose feedback to a client application on
tx validation failures.

• A chain fragment module that is shared with the consensus layer. It defines an in-memory
data structure for dealing efficiently with sub-sequences of blockchain headers.

As described in the previous section, the multiplexer satisfies the need to run multiple inde-
pendent application level protocols concurrently over a single TCP connection31. It is perhaps
worth noting that multiplexing is not unusual: the old cardano-sl network implementation also
relied on a multiplexer as part of the network-transport-tcp package. The new implementation
is simpler, smaller, more modular, and a better fit for the new design requirements.

We have the requirement (Section 11.1.1) that small stakeholders with reasonable consumer-
grade network connections and equipment should be able to operate a stake pool. This translates
to the technical requirement that nodes behind firewalls should be able to take part without
having to make manual alterations to their firewall configuration. To satisfy this, the design relies
on establishing outbound TCP connections and then using the connections in a bi-directional
manner.

We have the requirement to support multiple application level protocols and to bridge the
gap between the reliable ordered byte stream abstraction presented by the multiplexer and the

30This provides early failure and feedback when nodes accidentally connect to the wrong network, e.g. testnet vs
mainnet.

31While avoiding issues of “TCP Meltdown” (running TCP over TCP)

20

https://en.wikipedia.org/wiki/Tunneling_protocol#Secure_Shell_tunneling

reliable ordered message stream required by application level protocols. We must also make
effective use of network resources, and must do it all in a way that respects the constraints
stemming from the adversarial environment. This collection of requirements is met by the
typed-protocols library developed for the purpose. It meets the requirements and brings with it
a simple conceptual framework for thinking about and describing application level protocols.

The typed-protocols library is the jewel in the crown32 of the network layer implementation
and it has already been presented at three public events33. It casts application level protocols
in the form of state machines with the constraint that both peers agree on the state that they
are in. The transitions between states correspond to messages sent between the peers, so the
protocol state dictates which messages may be sent or received. A further constraint is that each
protocol state is labeled with the peer that has agency to send messages in that state. Thus in
each protocol state one peer may send any message (valid for the state) and the other peer must
accept any valid message (valid for the state). These constraints impose some simplicity on the
application level protocols and make the protocols deadlock-free by construction. The library
allows encoding protocols of this form in Haskell types, and thereby enforcing at compile time
that implementations of the protocols comply with the constraints implied by the protocol state
machines. In combination with compiler warnings it ensures that protocols only send when
they are allowed to and only messages appropriate for the state, and conversely are prepared
to receive when required and will handle all the messages allowed for the state. This provides
structure to help writing protocol implementations.

Performance is a major consideration for the protocol design, as discussed in the previous
section. The typed-protocols library has an innovative and effective solution. Many protocols
of interest, including the three consensus protocols, can be pipelined without any change to
the protocol state machine. The library provides a way to write a protocol implementation in
a pipelined way, with the exact same protocol-compliance guarantee enforced by the types.
Indeed it also provides type safety for certain pipelining invariants which is immensely helpful
for writing pipelined implementations. The pièce de résistance is that a pipelined client can
be paired up against a “normal” server that is oblivious to pipelining with the result being
a pipelined use of the protocol. This makes using pipelining pervasively a very tractable
proposition, and all three consensus protocols have fully pipelined implementations.

The individual consensus protocols are each designed with a few constraints and qualities
in mind. They are designed:

• to allow implementations that can work in bounded space;

• to maximise the opportunities for pipelining;

• to exclusively use consumer driven control flow, without polling;

• to be highly parametric to maximise flexibility and simplify testing;

• to otherwise minimise the complexity of protocol implementations.

The motivations for these are all obvious except perhaps the consumer driven control flow.
The motivation here is again about resource use. To avoid overload, malicious or otherwise, the
consumer should decide when it is ready to accept new information to process. This does not
prevent prompt transmission of, for example, new headers or transactions, and no costly polling
is required. This fits naturally in a stateful protocol.

32It is a session type framework. Session types are actively researched for more than 20 years, see [Hon93, THK94,
HVK98], and various implementations exists: Mungo (Java), Scrible, or [MV11] (Erlang), and many others.

33Notably at the “Monadic Party” 2019 Haskell Summer School, Poznan, PL, and at the “Haskell eXchange” 2019
London.

21

http://www.dcs.gla.ac.uk/research/mungo/
http://www.scrible.org
https://monadic.party/#talks
https://skillsmatter.com/conferences/11741-haskell-exchange-2019#program

The IO simulator was developed to aid testing. It is used in tests for network components,
individual protocols, application level protocol implementations, components within the con-
sensus layer, and the combination of the network and consensus layers as a whole. It provides
deterministic execution of concurrent code. It can produce a trace of interesting execution events.
This is useful because many properties of concurrent code we wish to test are expressed in terms
of event traces. It provides faster than real time simulation of time delays which is helpful for
testing network protocol timeouts. It will in future allow testing consensus between nodes with
clocks that are not completely in sync, which is otherwise a very awkward test to set up and run
automatically.

The bulk of the code in the network and consensus implementations are parameterized over
the type classes from the io-classes package, which enables running precisely the same code in IO
for production or in the IO simulator for testing. For example the consensus storage subsystem
is tested this way with simulated I/O failures and file corruption.

5.5 Related work (data diffusion)

As discussed in Section 5.1.1, there are strong reasons to conclude that pure broadcast cannot be
used in any Ouroboros implementation that respects the Ouroboros threat model, and reasons
to conclude that modifying a broadcast algorithm with the necessary checks is not a reasonable
engineering trade-off. This excludes many implementations of broadcast, including multicast
and pub/sub (publish/subscribe) algorithms.

5.5.1 PolderCast

PolderCast [SvVV12] is an implementation of pub/sub. As such it is not useful for an imple-
mentation of Ouroboros data diffusion as discussed in Section 5.1.1, (namely the asymmetry
in favour of adeversies). PolderCast, however, also establishes a P2P graph which is a neces-
sary feature of a fully distributed Cardano implementation. This is discussed in summary in
Section 5.8 and PolderCast is considered in more detail in Section 7.3.

5.5.2 Other blockchain systems

Significant related work is the data diffusion function of other existing (PoW) blockchain systems.
As discussed in Section 5.1.1, PoW provides a balance between adversaries and honest nodes
that allows such systems to use broadcast algorithms (at least for block headers) modified with
a stateless verification filter. PoW systems are also typically asynchronous, unlike Ouroboros
which must ensure block delivery within deadlines.

Bitcoin, Ethereum and the previous Cardano implementation are considered in more detail
in Section 6.2.2.

5.5.3 Other related work

Much related work exists on the choice of lower level network protocols. HTTP and the issue of
stateless protocols was discussed in Section 5.3.1 and is also discussed in Section 9.1.

Other stateful protocol layers include libraries such as ZeroMQ or servers for message queue
protocols like AMQP such as RabbitMQ. Unfortunately, as discussed in Section 9.1 the widely
used choices are not designed to be used on the public internet.

The event sourcing architecture is however a direct inspiration for the architecture for the
Cardano node. This architectural style is designed, amongst other things, to achieve very
loose coupling in distributed applications. In particular, the relationship between the node
as a data source and local node clients as data consumers is directly based on this idea. The

22

https://martinfowler.com/eaaDev/EventSourcing.html

key impediment to reusing implementations, rather than just ideas, is the fact that blockchain
algorithms only provide eventual finality rather than instant finality.

UDP is a lower-level internet protocol than TCP. TCP was chosen versus UDP because TCP
delivers the appropriate bearer characteristics needed for the mini-protocols, is supported in all
firewalls and has tried and tested methods for dealing with IP packet fragmentation. This is
however a decision that would be reasonable to revisit in future.

Establishing connections between consumer nodes that are both behind firewalls is difficult
but it would enable nodes on consumer broadband to make a greater contribution to the P2P
network. Further research would be required to evaluate potential solutions, but a solution may
involve augmenting the system with an additional non-TCP based bearer protocol specifically
for use between nodes behind firewalls.

The typed-protocols library can be considered as a limited and very lightweight form of
session typing. Related work is thus the existing literature on session types. The ABCD project,
in which Professor Wadler is involved, maintains a large collection of references and other
resources.

5.6 Decentralisation constraints

The requirements for decentralisation come from a combination of the business requirements
and technical requirements deriving from Ouroboros. The business requirements are set out in
Section 11.1. The dominant constraints derive from the nature of reality and from characteristics
of the Internet as it currently exists. We will review the key requirements and constraints.

Ouroboros is a system with hard real-time deadlines. They are deadlines measured in
seconds, not microseconds, but they are deadlines nevertheless. The deadlines can be missed
from time to time by eating into the adversarial stake budget, but consistent failure to meet the
deadlines destroys the properties of the system34. We get to pick the exact numbers for slot times
or block sizes, but whatever values we pick, we must be able to keep to the deadlines in the vast
majority of cases. IOHK’s Chief Scientist Aggelos Kiayias set a practical target of achieving the
deadline in 95% of cases. Compare this, for example, with a PoW system such as Ethereum,
which is an asynchronous system without hard deadlines. It can be, and has been, adjusted over
time, with longer block times during periods of high load (see Section 6.2.2 for details). This is
not an option for Ouroboros as it exists now: we must pick the slot length parameter and we
have no mechanism to adjust it on short time scales in response to network events. If we pick
too relaxed a target then we leave transaction throughput on the table, and too tight a target
risks system collapse. Thus a clear priority is consistency of block delivery times. We wish to
avoid a long tail35.

The other key business requirements are:

• the network layer should be decentralised in the sense that ”IOHK should be in the same
position on the network as any other stakeholder with an equivalent amount of stake”;

• to support certain transaction latencies and throughput rates;

• to support worldwide distribution;

• 1,000 stakepool nodes holding about 80% of the system’s stake36;

• 10,000 other small-scale private stakepool nodes; and

34Praos does make this better in that it becomes a gradual degradation rather than a cliff edge. This lets it cope
better with variance in block delivery times, but it does not help substantially with the whole distribution being
shifted.

35See Section 6.2.2 which touches on an analysis of the Bitcoin network and the long tail of block delivery times
36The original business requirement was for 100 large-scale stake pools (see Section 11.1.1) but this was later raised

to 1000.

23

https://groups.inf.ed.ac.uk/abcd/

• the requirement to support private stake pools operating on consumer-grade network
connections;

There is a trade-off between block size and the transmission time of a block from one slot
leader to the next. Of course the bigger the blocks that can consistently be delivered within
the deadline, the higher the transaction throughput. The interesting question is how well we
can do within this trade-off: can we easily meet the TPS targets or is this a harder problem?
If the problem is easy then we may be able to use off-the-shelf solutions that do not get the
highest possible TPS but at least cover the TPS targets. If the constraints make the problem
more difficult then we may require a customised solution simply to hit our TPS targets. Thus
we should review the factors that may impinge on transferring blocks of various sizes across a
network, since that determines the envelope within which we can adjust the block size versus
transmission-time trade-off.

In general the consensus nodes must arrange themselves in a graph. It does not scale very
far to have every node linked to every other node. To work in limited memory and network
resources we must limit the valency for each node – that is each graph node’s in-degree or
out-degree. This means that in general a block must transit multiple hops through the graph
to get from one slot leader to the next. Since we are interested in the overall transmission time
between slot leaders then we must be interested in both the number of hops and the transmission
time on each hop. A useful technical graph metric here is one known as the characteristic path
length [Wat99]. Informally it can be thought of the typical path length, taking into account both
the number of hops and the hop transmission times.

Let us consider the number of hops. The typical number of hops clearly depends on the
size of the graph, the typical valency and the shape of the graph. Section 11.3 provides tables
relating hop counts and valencies with maximum graph size (at least in the perfect case of a
homogeneous spanning tree). This tells us that for our target of 1000 stake pools, related relay
nodes, and other participants, we can expect to have a hop count of at least 5 and a valency of
5 or more. This valency appears reasonable, though in reality it cannot be homogeneous. We
would hope to allow edge nodes to use a lower valency and server-class nodes to be able to
support a substantially higher valency.

Let us consider the transmission time per hop. This clearly depends on the characteristics of
the Internet and of TCP, the underlying transport protocol that we use. Section 11.2 presents
tables of transmission delays based on a model of TCP, calibrated with measurements between
AWS data centres in various regions. For larger block sizes, such as 1Mb, the transmission times
for intercontinental hops become quite large, in the 0.5–2.5 second range. Transmission times in
this range are a significant fraction of our overall slot length budget.

The conclusion from the per-hop transmission time numbers is that if we are to use larger
block sizes then we will need to ensure that on a typical path we do not get too many interconti-
nental hops. This can be ensured either by keeping the overall hop count low, or by selecting
hops in a way that is sensitive to their transmission delays (or of course a combination). We
already know, however, that we must expect hop counts of at least five, and five intercontinental
hops brings us perilously close to our overall slot time budget once one takes into account other
delays such as processing time, clock skews and other factors mentioned in Section 6.2.1. So this
suggests that at least for larger block sizes, we are not in the ”easy” scenario since we must keep
both hop count and hop transmission times under control.

How large must the blocks be to hit our TPS targets? This is a straightforward calculation.
Section 8.2 has a table relating average transaction size, block size and TPS, for 20s slot times.
For example, for 1kb (kilobyte) transactions, 50 TPS requires 1Mb (megabyte) blocks. In the
existing Byron system the smallest practical transactions are over 350 bytes, while exchanges
chafe at the 8kb transaction size limit, and new features such as metadata, multi-sig and scripts
will all require larger transactions.

Once we take into account future user base growth and the expected growth in transaction

24

sizes then our conclusion must be that if we wish to scale to our stretch goals, or perhaps even
to hit our target goals, we must use a decentralised P2P graph construction mechanism that
is sensitive to the combination of path hop counts and hop transmission times. Or conversely,
we can only be oblivious of hop transmission times if we have small block sizes and hence low
overall throughput.

Ideally any design we pick now should be one where we can have confidence that we can
meet conservative initial throughput goals, but that does not preclude scaling to more users,
higher throughputs etc.

A threat that is of significant concern in existing distributed blockchain systems is that of
eclipse attacks. An eclipse attack is where attackers try to insert themselves in the network graph
in such a way as to prevent a target node from discovering the ”true” blocks from the system.
To prevent the target node from becoming aware that it is eclipsed, the typical approach is for
the attackers to supply the target with their own valid chain.

Eclipse attacks are a relevant problem for PoW blockchain systems. The crucial difficulties
for PoW systems appear to be these:

• attackers (with moderate hashing power) executing an eclipse attack can create growing –
albeit slowly growing – valid chains; and

• a node does not generally know the amount or distribution of hashing power.

Ouroboros does not share these difficulties. While it remains the case that attackers (with
moderate stake) attempting to execute an eclipse attack can create valid slowly-growing chains,
the difference is that validating nodes inherently know the current stake distribution. The
node that is the target of the attack can compare the chain it observes with the current stake
distribution and gather probabilistic evidence that it is being eclipsed. Section 11.4 provides an
analysis of the speed and confidence with which this can be established. The conclusion is that
at least for low stake attackers the time scales are very practical. More analysis is needed for
medium and high stake attackers. Our threat model dictates that we must at least handle low
stake adversaries.

5.7 Decentralisation design

Analysis of “S/Kademlia” suggests that one of the main drivers for its complex design is that it
attempts to establish a degree of resistance to eclipse attacks based on very weak assumptions. It
appears that starting from so few assumptions makes it difficult to establish resistance to eclipse
attacks. As described above, however, Ouroboros furnishes us with the ability to probabilistically
detect eclipse attacks on relatively short time scales. It is also worth noting that a deliberate
eclipse attack and an accidental network partition are essentially identical from the perspective
of the victims. Thus a solution that can recover from eclipse attacks already has many of the
characteristics needed to recover from accidental partitions37.

In our use case we must build a large graph in a decentralised way, initially from nodes
contributed by IOHK and later by stake pool operators, and grow it to support all stake pools
and users. We would like small hop counts and we would also like to avoid the danger of there
being too many long hops.

A literature review did not reveal existing complete designs that could meet the combination
of timing and throughput goals, when scaled up to the expected number of nodes, when globally
distributed, and subject to the behaviour of TCP38. Selected related work is discussed in the next
section, and the constraints are analysed in more detail in Section 6.2.1 and Sections 11.2 to 11.6.
The literature review does however reveal useful theory.

37The consideration of the appropriate mitigations to large scale network disruption (e.g. BGP routing issues,
undersea cable damage) including their likely time to repair etc is part of the planned work.

38Using TCP is not a theoretical constraint, but it is a practical engineering and development schedule constraint.

25

Graph theory [Wat99] tells us that small hop counts39 (formally, the characteristic path
length) can be achieved in large graphs, including random graphs. Furthermore it tells us
that these graphs can be ”grown” from smaller ones. This is a very helpful combination of
characteristics for our use case, as we want small hop counts, and random graphs are easier to
build in a decentralised way than highly structured ones, especially in the presence of failures
and adversarial behaviour. To achieve the low characteristic path length, the theory requires
that nodes have a high enough mean valency, and a high enough standard deviation in the
valency. Under these conditions the low characteristic path length is remarkably stable – for a
range of starting graph types including random graphs40. Typical numbers are a mean of 10 and
standard deviation of 3, which give a rough range of valencies of 4–16. This would appear to be
eminently achievable, using the middle of the range for edge consumer nodes, and using the
upper end for server nodes.

Bearing in mind the requirements, constraints and theory, our approach is to solve the
problem directly, using a single simple flexible design.

The theory tells us that we can use random graph construction, which we can do with
standard random gossip techniques. This deals with the decentralisation requirement and the low
hop count constraint. The remaining significant issues are avoiding eclipse attacks, as previously
discussed, and avoiding too many long hops. Our design is to address these 2 concerns with
separate mechanisms: eclipse evasion and peer sharing. Because of this, we’re rebranding this
”random gossip” inspired process to Peer Sharing. The Peer Sharing protocol’s goal is to make it
easier to find possible peers within the overall Cardano network, leaving the Eclipse Evasion
mechanism to deal with that separately. This general design is relatively simple, and has the
significant virtue that the policy for the control loops can be adjusted after initial deployment
with relatively few compatibility impacts. This should enable the policy to be optimised based
on real-world feedback, and feedback from simulations of scale or scenarios that are hard (or
undesirable) to test in a real deployment.

Each node maintains three sets of known peer nodes:

• cold peers are peers that are known of but where there is no established network connection;

• warm peers are peers where a bearer connection is established but it used only for network
measurements and is not used for any application level consensus protocols;

• hot peers are peers where the bearer connection is actively used for the application level
consensus protocols.

Limited information is maintained for these peers, based on previous direct interactions.
For cold nodes this will often be absent as there may have been no previous direct interactions.
This information is comparable with ”reputation” in other systems, but it should be emphasised
that it is purely local and not shared with any other node. It is not shared because this is
not necessary and because establishing trust in such information is difficult and would add
additional complexity. The information about peers is kept persistently across node restarts, but
it is always safe to re-bootstrap – as new nodes must do.

For an individual node to join the network, its bootstrapping phase starts by contacting
root nodes and requesting sets of other peers, which are added to the cold peer set. It proceeds
iteratively by randomly sampling suitable peers to contact to request more known peers. This
Peer Sharing process is governed by a control loop that has a target to find and maintain a
certain number of cold peers. Bootstrapping is not a special mode, rather it is just a phase for the
control loop following starting with a cold peers set consisting only of the root nodes. This peer
sharing aspect is closely analogous to the first stage of Kademlia, but with random selection
rather than selection directed towards finding peers in an artificial metric space.

39This research provides a basis for the pre-existing popular ”small world” idea of six degrees of separation.
40Interestingly, rings are a pathological starting case

26

https://en.wikipedia.org/wiki/Six_degrees_of_separation#Computer_networks

The root nodes used in the bootstrapping phase are the stakepool relays published in the
blockchain as part of the stakepool registration process. See the Shelley delegation design
specification, Sections 3.4.4 and 4.2. As with Bitcoin, a recent snapshot of this root set must be
distributed with the software.

The inner control loop governs the following activities:

• the peer sharing used to discover more cold peers;

• promotion of cold peers to be warm peers;

• demotion of warm peers to cold peers;

• promotion of warm peers to hot peers; and

• demotion of hot peers to warm peers.

The inner control loop has the following goals to establish and maintain:

• enough cold peers (e.g. 1000);

• enough hot peers to meet the valency target (e.g. order of 5–20);

• enough warm peers in total (e.g. order of 10–50)

• a set of warm peers that are sufficiently diverse in terms of hop distance.

• a target churn frequency for hot/warm changes

• a target churn frequency for warm/cold changes

• a target churn frequency for cold/unknown changes

The target churn values are adjusted by the outer control loop, which we will address below.
Local static configuration can also be used to specify that certain known nodes should be

selected as hot or warm peers. This allows for fixed relationships between nodes controlled by
a single organisation, such as a stake pool with several relays. It also enables private peering
relationships between stake pool operators and other likely deployment scenarios.

Using 5–20 hot peers is not as expensive as it might sound. Keep in mind that only block
headers are sent for each peer. The block body is typically only requested once. It is also worth
noting that the block body will tend to follow the shortest paths through the connectivity graph
formed by the hot peer links. This is because nodes will typically request the block body from
the first node that sends the block header.

While the purpose of cold and hot peers is clear, the purpose of warm peers requires further
explanation. The primary purpose is to address the challenge of avoiding too many long hops
in the graph. The Peer Sharing protocol is oblivious to hop distance. By actually connecting
to a selection of peers and measuring the round trip delays41 we can start to establish which
peers are near or far. The policy for selecting which warm peers to promote to hot peers will
take into account this network hop distance. The purpose of a degree of churn between cold
and warm peers is, in part, to discover the network distance for more peers and enable further
optimisation or adjust to changing conditions. The purpose of a degree of churn between warm
and hot peers is to allow potentially better warm peers to take over from existing hot peers.

The purpose in maintaining a diversity in hop distances is to assist in recovery from network
events that may disrupt established short paths, such as internet routing changes, partial loss of
connectivity, or accidental formation of cliques. For example, when a physical infrastructure

41Or more precisely the two unidirectional ∆Q measures

27

https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/delegationDesignSpec/latest/download-by-type/doc-pdf/delegation_design_spec
https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/delegationDesignSpec/latest/download-by-type/doc-pdf/delegation_design_spec

failure causes the short paths to a clique of nodes to be lost, if some or all of the nodes in that
clique maintain other longer distance warm links then they can quickly promote them to hot
links and recover. The time to promote from warm to hot need be no more than one network
round trip.

Overall, this approach follows a common pattern42 for probabilistic search or optimisation
that uses a balance of local optimisation with some elements of higher order disruption to avoid
becoming trapped in some poor local optimum.

The local peer reputation information is also updated when peer connections fail. The
existing implementation classifies the exceptions that cause connections to fail into three classes:

• internal node exceptions e.g. local disk corruption43;

• network failures e.g. dropped TCP connections; and

• adversarial behaviour, e.g. a protocol violation detected by the typed-protocols layer or by
the consensus layer.

In the case of adversarial behaviour the peer can immediately be demoted out of the hot,
warm and cold sets. We choose not to maintain negative peer information for extended periods
of time; to bound resources and due to the simplicity of Sybil attacks.

The outer control loop deals with the problem of eclipse – whether malicious or accidental
– and also adjusts the behaviour of the inner control loop over longer time scales. The outer
control loop controls:

• the target churn frequencies of the inner control loop for promotion/demotion between
the cold/warm/hot states

• partial or total re-bootstrapping under certain circumstances

The outer control loop monitors the chain growth quality, comparing it with the stake
distribution. The probability of being in a disconnected clique or being eclipsed is calculated. As
this rises the control loop increases the target frequencies for the churn between the hot, warm,
cold, and unknown states. In the worst case it can re-bootstrap the peer discovery entirely by
clearing the hot and warm sets and resetting the cold set to the bootstrap peers.

As previously stated, this design has a lot of opportunity to tweak and tune the policies used
in the two control loops. The points of interaction in this design is limited to a mechanism to
request known peers, and the mechanism to change a peer connection between the warm and
hot states. All the rest is governed by purely local policies and hence there is significant scope to
adjust these over a series of releases without introducing significant compatibility problems.

5.8 Related work (decentralisation)

As discussed in Section 5.7, prior graph theory [Wat99] tells us that we can construct large
graphs with small hop counts from a range of starting graph types. To do so however requires a
high enough mean and variance for the valency, well above 2-3. The results also demonstrate
that using rings as the starting graph type is dramatically worse than using random graphs for
the starting graph type.

As discussed in Section 5.6, poor network topography can sometimes be tolerated provided
that the block size, and hence TPS, are suitably low. For example if 32k blocks were used (similar
to the typical Ethereum size44) then the effect of using long distance links is reduced, but even

42Simulated annealing for example
43The recovery from detected disk corruption involves resetting to a known-good state, which involves shutting

down connections to all peers.
44This fits in two TCP round trips given typical parameters.

28

with the minimum useful transaction size we would hit only 4.5 TPS, which falls well short of
the minimum TPS target from the business requirements of 8 TPS.

A recent paper [CBT+19] applies fountain codes to the problem of speeding up block
broadcast. The essence is to improve the time to complete, compared even to a perfect spanning
tree, by taking greater advantage of the full cross-sectional capacity of the graph. It works by
breaking a large block into small chunks and sending different chunks across different paths
in the network. It has an analysis of its resistance to adversaries trying to interfere with the
broadcast. Overall, it is an innovative idea and while as a broadcast algorithm it does not easily
fit our design, it merits further analysis to determine if the core ideas could be adapted.

A network performance problem with classic blockchain algorithms is that they cannot fully
utilise the available network capacity. We noted previously that time that is expended without
sending or receiving data is time that can never be regained. Sending a block along a path in a
graph from one slot leader to the next means that at any one time, all but one of the network
links are idle and the capacity is wasted. The approach described above with fountain codes is
one approach to try to use more of the links more of the time.

Another approach to achieve true scalability is by running a collection of parallel but related
blockchains, allowing different machines to operate different subsets of the chains. Even in the
special case that every node in the system manages all chains, there is an opportunity for better
use of network capacity. By running multiple chains out of phase (systematically or randomly),
the times at which blocks need to be transmitted can be spread out over time, leaving less wasted
time when the network links are idle.

As part of our literature survey on decentralised connectivity graph construction we have
sought out potential academic experts, including attending “The Mathematics of Networks”
EPSRC-funded seminar series in the UK. Our general conclusion from the literature and from
discussions with experts is that P2P graph construction is not a mature academic topic and
would benefit from further study.

Other implementation approaches to decentralization are discussed in Section 7.

6 Distributed consensus on a global scale

6.1 Characteristics of Cardano

We start with a PoS algorithm called Ouroboros, and a mathematical proof that it works even
with a substantial proportion of bad actors (adversaries) and a certain amount of delay in
communication between nodes [BGKR17]. As described in Section 5, the engineering design
of Cardano – and its Shelley implementation in particular – refines Ouroboros45 to a robust,
real-world, and computationally efficient implementation. A globally distributed network of
nodes implementing Ouroboros in the real world must be robust against communication delays
and failures, constraints in capacity, hostile actors, etc..46

Cardano is ultimately a cooperating system of autonomous nodes. It is not a client-server
design, so there is fundamentally no central point of control nor any privileged class of centrally
managed servers. However, its original implementation codenamed ‘Byron’ has seven federated
nodes that produce blocks. Section 5.7 is the goal of the second phase of Shelley.

6.2 Fundamental requirements of Cardano data diffusion

The Shelley network component has a specific problem to solve: it must meet the information
exchange requirements of the consensus algorithm, in particular:

45Shelley includes an array of proofs and tests to ensure that desirable properties of the Ouroboros algorithm are
preserved in this transition from theory to implementation.

46The CAP Theorem (https://en.wikipedia.org/wiki/CAP theorem) places an upper bound on real-world perfor-
mance which sums up as “Consistency, Availability, and Partition-tolerance: pick two.”.

29

https://en.wikipedia.org/wiki/CAP_theorem

Table 2: Data diffusion budgets

Threshold Target Stretch

Max hops 20s budget 15s budget 10s budget
2 10.0s 7.5s 5.0s
3 6.6s 5.0s 3.3s
4 5.0s 3.75s 2.5s
5 4.0s 3.0s 2.0s

• diffusion of blocks to all potential creators of new blocks

– within the required timing constraint.

• propagation of transactions for inclusion into blocks

It must do this using poorly-specified and/or poorly-implemented sub-systems outside
Cardano’s control47, offering highly variable performance, in particular the global public IP
network48.

6.2.1 Timeliness constraint

The time-slotted nature of the Ouroboros algorithm introduces a strong timeliness constraint on
data diffusion to all nodes. Since any (stake-holding) node could be the next leader, every node
needs to have a copy of the last block before the end of the slot. Failing to meet this constraint
reduces the security guarantees provided by the algorithm, damages the quality of the chain
and hence strengthens any adversary.

Note that it is not sufficient to distribute blocks in a timely way ‘on average’ – every new
block relies on knowledge of the preceding block, whichever node this was generated by. The
data diffusion function therefore needs to deliver tight bounds on the probability distribution of
delivery of every individual block, effectively making Cardano a globally-distributed stochastic
hard-real-time system.49

Note that the ‘hard’ does not refer to the level of difficulty – increasing the slot length would
make the problem easier – but to the consequences of failing to meet the deadline. It is rarely
catastrophic if, e.g., a web page takes a long time to load, whereas failing to deliver blocks
on time (whatever that time is chosen to be) has the potential to arm an adversary to disrupt
Cardano.

The table 2 gives a per-hop budget for “data diffusion”, based on the business requirement
of a 20s inter-block interval50. Note that each ‘hop’ includes both reception and validation of the
block. The next slot leader needs to receive the block in time to fully verify it and update its
local mempool/UTxO before creating the next block.

The budget also needs to accommodate the potential clock skew between nodes (as discussed
in Section 11.6), which can be 100ms or more. These figures should be compared with the time-
to-complete for delivering a block in Section 11.2.1.

47Any blockchain protocol has to deal with potentially corrupt and adversarial players but at least we can set the
rules they play by when we design the system. The network component has no such guarantee: we can not modify
the rules of the global IP network’s game.

48Which also suffers from the legacy of many sub-optimal design decisions [Day08].
49By contrast: BitTorrent is globally distributed and scalable, but not time-critical; Skype or WhatsApp group is

global and (moderately) time-critical, but not distributed, in the sense that the number of participants is small.
50This is the exact interval for Ouroboros Classic, and the targeted average interval for Praos.

30

The budget also needs to cover worst-case and not just typical conditions. Factors making
meeting the constraint harder to meet include the threats enumerated in Section 6.3 and the
extent and scale of the network (which will not be under any control once the system is fully
decentralised).

6.2.2 Comparison with previous network implementations

The immediate question is: is this timeliness constraint hard to meet, or not? We consider some
evidence from Bitcoin, Ethereum, and Cardano.

Bitcoin There is some evidence available from Bitcoin, in the form of two research papers and
publicly available data following those papers.

http://bitcoinstats.com/network/propagation/ shows daily data on block and tx propa-
gation time from 2013 to 2017, following a paper from 2013 [DW13]. The relevant data is the
column ”Block 90th percentile”, showing the average time that it took a block to reach 90% of
the nodes (averaged over a day). There are very few days where this has been under 10 seconds,
and several days where it took more than 100 seconds.

Note that these are only averages over a day, so there are periods within a day where the
time to get to 90% of the nodes is larger. Also notice the long tail, zooming in to a particular day
(http://bitcoinstats.com/network/propagation/2016/02/25): 50% of the nodes took 8.3s, 75%
20.3s, but 99% 1205s.

The data shows an enormous spread. Of course, this is not a problem for Bitcoin, due to
its large inter-block interval. What we need for Cardano, however, is consistently delivering
blocks to (at least) the next block producer in less than 20s, minus whatever time it takes to
create another block. Any period of time where we do not reach that will lead to random forks,
and an opportunity for an attacker to mount an attack.

There is another paper [Neu19] that shows a large improvement in Bitcoin block propagation
time in 2018. With those numbers, it seems possible to run Cardano for a couple of months
before forks would appear and the system becomes easily attackable. The authors attribute this
decrease in block propagation time to two things:

1. The appearance of relay networks such as FIBRE51.

2. Changes in the bitcoin network have allowed a faster transmission of blocks.

Keep in mind that for Bitcoin it suffices to check just the hash of the block before passing it
on to peers, but for Cardano, more expensive block validation is needed before relaying, as not
doing so would open up an asymmetric resource DoS attack on the network, as discussed in
Section 5.1.1.

Ethereum Etherscan shows data for the average block time in Ethereum. The graph suggests
that Cardano’s requirement of consistently achieving block delivery in 20 seconds can be
realistically solved by existing technology. If it works for Ethereum, why not for us?

The graph shows daily averages, not individual blocks; the 95th percentile is inevitably
higher! Also, there are extended periods (2.5 months in 2017, when the system was under heavy
load) where the average block time was consistently larger than 20 seconds.

The further crucial point is that comparing the block time in Ethereum and the slot length in
Cardano is not straightforward. In Ethereum (or any PoW system), block time is determined
by how long it takes a mining node to: process transactions; solve the cryptographic puzzle;

51Note that this is essentially the approach that we are taking with Cardano for the time being until we have
demonstrated in simulation that our peer selection algorithm results are good, and have determined suitable
parameters.

31

http://bitcoinstats.com/network/propagation/
http://bitcoinstats.com/network/propagation/2016/02/25
https://etherscan.io/chart/blocktime

and construct the next block. Since any node can produce this block, there is no requirement on
the propagation of the previous block through the network; if only a subset of nodes receives
the block in this time, one of those nodes will win the race. But in Cardano, the node that can
produce the next block, and the time by which this has to happen, are fixed beforehand. Failure
to deliver the previous block to this specific node52 on time will result in a fork, a reduction in
chain growth, and an advantage for the adversary.

The question then is:

if the block propagation times (the time it takes a block to propagate to the vast majority of
nodes) in Ethereum were not consistently below the block time (the time it takes a node to
create a block), would that not lead to frequent forks?

The answer is:

yes, it would – or rather, yes, it does ...

. . . but instead of avoiding frequent forks by forcing the block time to be well above the
expected block propagation time (as Bitcoin does), Ethereum uses a consensus algorithm and
reward mechanism that accept frequent forks. So-called “uncle blocks” – blocks that are not a
direct ancestor, but forked off the same chain in the recent past – can be referenced in a block,
to increase the chance of the block being accepted, and miners of uncle blocks get (reduced)
rewards for them. More on this in

• https://ethereum.stackexchange.com/questions/10166/why-doesnt-ethereum-have-a-fast-
relay-network-like-bitcoin and also

• https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a).

Besides, the block size for Ethereum is typically 20-30kb (kilobytes) – with ˜35kb during
the 2017/18 winter rush. This is mainly in the ballistic throughput range of TCP53, so a hop in
Ethereum is fast. For Cardano, we want up to 50 transactions per second54, which for transaction
sizes of 1kb and a slot length of 20s, implies 1Mb (megabyte) blocks, which take significantly
longer to send (compare with Section 11.2).

So the short answer to the question

“Why can’t we use what Ethereum uses to guarantee block delivery within a slot length?”

is:

Ethereum’s networking does not provide such delivery guarantees. Instead, it uses
small blocks and adapts its consensus and rewards algorithm to reduce the impact
of forks that result from a failure to deliver blocks before the next block is created.

Additionally, prior to early 2018, Ethereum was vulnerable to eclipse attacks that could be
executed by attackers with very low resources. This was discovered by independent academic
analysis of the code [MHG18]. There remains little positive evidence of the robustness of the
P2P layer in Ethereum to this class of problem. The existing research has focused on finding
and fixing Kademlia flaws, rather than proving outcomes within a threat model. Indeed, even
with the adoption of the recommendations from the academic analysis of Ethereum’s Kademlia,
eclipse attacks using thousands of nodes are still possible.

52In Ouroboros Praos, the node due to be leader is known only to itself, thus blocks must be propagated to all
stake-holding nodes.

53The ballistic part of a TCP connection is those packets that can be sent within the current available window. An
idle TCP connection “closes its window” down to an initial value (between 4 and 10 packets depending on O/S).
Etherum (either deliberately or not) is taking advantage of this in the block size used.

5450 is the stretch target, not the minimum, but it does mean we should not have a design limitation that would
prevent 50.

32

https://ethereum.stackexchange.com/questions/10166/why-doesnt-ethereum-have-a-fast-relay-network-like-bitcoin
https://ethereum.stackexchange.com/questions/10166/why-doesnt-ethereum-have-a-fast-relay-network-like-bitcoin
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a

Cardano Byron The third data point is the first implementation of Cardano itself. Before
launching, an extensive benchmark/stress test determined that we could not distribute blocks
amongst the nodes within a slot if the “discovered” network diameter was too large, using the
Kademlia-based network implementation55.

This led to the short-term decision to choose the network layout that we used in Byron –
7 tightly connected core nodes that produce blocks, surrounded by relay nodes that facilitate
communication with end users – and to the long-term decision to design a network stack that
could handle the unique requirements of Cardano.

6.2.3 Stateful connections

In constructing an implementation of the consensus algorithm, it is essential to interleave aspects
of validation with communication, as explained in detail in Section 5.1. This has the important
implication that the sequence of communications from any peer needs to be preserved, which
means that connections need to be stateful. This effectively rules out stateless communication
stacks, such as typical RPC approaches.

6.3 High-level threat model

Fundamentally, the threat model is that of Ouroboros, with some practical real-world con-
siderations (like having to work on the existing Internet and not trying to be safe against
well-funded/state-level actors).

Whilst this is not captured in a traditional methodology of threat model development, the
below are the major areas of consideration for such a model.

The Ouroboros assumption is quite weak: simply that at least 50% of the stake is held by
agents that will follow the Ouroboros algorithm faithfully56. This obviously says very little
about the trustworthiness of any particular agent/network node.

We also have the requirement that anyone can participate in the Cardano system, even if
they own no or very little stake. Thus the risk of Sybil-style attacks57 in the network layer is
very high: it is very cheap to make a large number of network-level agents that can interact with
honest nodes in the system.

The principal threats considered in the Shelley network design are:

1. Adversarial peers

2. Resource exhaustion attacks

3. Tier-1 actors

4. Bearer-level attacks

The response to these in the Shelley network design is summarised in Section 9.9

55Note that there was a Kademlia implementation in the original Cardano-SL code, and it was used in tests. It was
realised that this would not work for large networks and for small networks it often resulted in a partitioned network
graph. Thus it was never used in production, rather a static graph was used instead. The static graph topology was
subject to K-cut analysis to ensure maximum resilience to both localised (i.e data centre) and large scale (loss of
connectivity due undersea earthquake).

56Technically, in Ouroboros Praos, this assertion is diluted by allowing for delays in delivering messages. The
honest stake proportion becomes 50% + F(∆), where ∆ is the number of slot-times that a message is allowed to be
delayed.

57https://www.geeksforgeeks.org/sybil-attack/

33

https://en.wikipedia.org/wiki/Minimum_k-cut
https://www.telecomramblings.com/2010/06/subsea-quakes-and-transatlantic-cable-diversity/
https://www.geeksforgeeks.org/sybil-attack/

6.3.1 Adversarial peers

The Cardano system consists of independently operating nodes that exchange information
according to a specific protocol; the set of nodes that a particular node communicates with are
called its ‘peers’.

We define an adversarial peer to be one that does not correctly implement the protocol (so by
definition both inoperative and malicious peers are adversarial)58.

The Ouroboros algorithm works to deliver reliable consensus even when some nodes are
adversarial, provided the proportion of the total stake held by the remaining ‘honest’ nodes is
no less than 51%.59

Adversarial peers can engage in the protocols incorrectly in two main ways:

1. functional: by sending incorrect information; and

2. non-functional: by failing to meet timing constraints – deliberately or not.

Functional violations include high level examples such as sending invalid blocks, and low
level examples such as sending unexpected or ill-formed protocol messages. Non-functional
violations include examples such as failing to forward blocks or transactions.

6.3.2 Eclipse attacks

A particular case of adversarial peers is the eclipse attack, in which a high proportion of a node’s
peers are adversarial and collaborate to deliver false but consistent information to the eclipsed
node.

In PoW systems the inherent uncertainty in the appearance of new blocks makes this attack
effective, since it is difficult for the node to detect that it is failing to receive blocks generated
by honest actors using information available within the system60. An adversary can effectively
magnify its hash power by delaying or deleting blocks generated by honest miners. This leads
to requirements on the network layer to construct connectivity graphs in which eclipse attacks
are more difficult (see Section 7.2 on Kademlia).

In PoS systems such as Ouroboros, however, blocks are generated according to a pre-
established stake distribution, so a node can always detect eclipse; either it receives few or no
blocks61, or blocks that are invalid. This means that making eclipse attacks difficult is not a
requirement for the network component of Shelley.

6.3.3 Resource exhaustion attacks

Another way to attack a node is to exhaust some resource such as:

• CPU capacity;

• RAM;

• storage;

• network interface capacity.

58This is consistent with the use of the term in the Ouroboros papers, but applied to the network protocols between
peers.

59In fact 50% + ε would do, but it would take a long time to certify that the system has settled to a consistent state.
60Information extrinsic to the system, such as the locations of major mining pools, might be useful.
61Complications in eclipse detection arising from the random generation of blocks in Ouroboros Praos are discussed

in Section 11.4.1

34

There is a further implied requirement to achieve timely information exchanges even in the
presence of adversarial behaviour at the network level. Also implicit is that we must do this within
bounded (and reasonable) resource limits; otherwise the system becomes too expensive and/or
impractical to deploy. Combining these requirements we conclude that it is desirable to ensure
that adversarial behaviour cannot increase the resource consumption at a node.

We cannot prevent this altogether, but we can make it expensive for the attacker, i.e. they
must expend as much resource to mount the attack as it will consume on the node (preferably
more). This makes it difficult for the attacker to compromise sufficient nodes simultaneously to
weaken the security guarantee of Ouroboros.

Note that there is a significant difference in the nature of this threat between PoW and PoS
systems. In PoW there is an inherent asymmetry between the honest nodes and adversaries:
a PoW header is very cheap to check and requires no context from the chain. False headers
passing the PoW check are very expensive to create. A PoW relay node does not need to keep a
copy of the chain or ledger state and can still bound the number of false headers it propagates to
be proportional to the hashing power of the adversary.

By contrast, in a PoS blockchain such as Cardano it is cheap for network-level adversaries
to construct erroneous headers and blocks. Honest nodes validating headers require the full
state of the ledger as context62, as discussed in detail in the Section 5.1.1. Adversaries with a
relatively modest amount of stake can create unbounded numbers of apparently valid headers
and blocks (in the slots in which they are entitled to create blocks). For DoS prevention overall,
the balance between honest vs adversarial nodes in a PoW system is much better than for honest
nodes in a PoS system. This is a significant attack vector that must be addressed.

It is also necessary to consider its interaction with the timeliness constraint; if an attacker
can increase the resources used by a node to the point where it becomes significantly slower to
respond this could impact timely diffusion of blocks.

6.3.4 Tier-1 actors

Executing any consensus algorithm between a set of distributed nodes connected by the global
IP network adds new threats from outside the system. In particular we must consider what can
be done by ‘actors’ who can observe/modify the traffic contents and/or arrival pattern to/from
a node; we call these tier-1 actors63, which include ISPs, datacenter operators and nation states.

Clearly a tier-1 actor can prevent a given node within its domain from participating in
the algorithm, and there is no way around this for the node other than to have access to an
alternative bearer that is not under control of that actor.

However, for Cardano, provided the whole system of nodes is sufficiently distributed and
diverse so that no single tier-1 actor can isolate a large proportion of the total stake, the security
of the algorithm will be preserved. Ensuring the delivery of correct and timely information
so that Cardano as a whole cannot be easily compromised is one of the primary goals of the
network design.

6.3.5 Bearer-level attacks

In our context, the bearer is TCP over the public IP network. An attack on the node at this level
is typically a denial-of-service (DoS) attack that involves overloading the host machine with IP
packets. Such attacks on a node at the bearer level are beyond our control, since the decision
to forward packets is made by the IP network and is unlikely to be affected by any action a

62If we delay validating headers until adding the whole block to the chain then we have already spent our network
resources on downloading the corresponding block body. This would open up lots of resource attacks.

63https://en.wikipedia.org/wiki/Tier 1 network

35

https://en.wikipedia.org/wiki/Tier_1_network

node can take64. However, the impact of such attacks can be mitigated by careful design of the
network architecture.

7 Analysis of alternative approaches

A variety of approaches to constructing networks have been proposed in the literature. Questions
to ask about them include:

• What advantages do they offer?

• Can they natively:

– Ensure meeting the timeliness constraint?

– Deal with adversarial peers?

– Resist resource exhaustion attacks?

• If not, what is the likely effort in modifying them to be able to do so?

– And the risk of failing to do so in the Shelley delivery timescale?

In general:

• Broadcast methods are not used here for two reasons:

a. broadcast without interleaved validation would be subject to trivial DoS,

b. quite some time was spent looking at how to use block broadcast to implement
Ouroboros but did not produce anything safe, whereas using chain syncing the
security was clear and relatively simple to validate.

• Off-the-shelf P2P systems are not designed to deal with our threat model. In particular
very few are designed to resist asymmetric resource consumption attacks. Such attacks are
a real problem as demonstrated by recent CVEs on HTTP2 implementations65.

• Existing P2P graph-construction systems are of limited use to us because they rely on the
number of attackers in the network being a modest fraction of the overall network. Since
creating network nodes in Cardano is essentially free, and our network will not be very
large, this is not a strong defence and certainly would invalidate our Ouroboros claims,
based only on the Ouroboros assumptions66.

We now consider selected published related work in more detail.

7.1 Dandelion

This is an approach to improve potential anonymity for the submission of transactions in
existing cryptocurrency network systems such as Bitcoin’s through encrypted forwarding and
randomised routing [VFV17]. The goal is to minimise the information that observers within the
distributed ledger system can obtain about the ultimate source of a transaction. The authors admit,
however, that their system provides no guarantee of anonymity against Section 6.3.4.

Such anonymity enhancement is not a requirement for Shelley, but could be considered in
later iterations.

64An organisation or individual responsible for a node may be able to take action, but on a longer timescale.
65https://www.securityweek.com/http2-implementation-vulnerabilities-expose-servers-dos-attacks
66Our claim would essentially reduce to ”assume 50% of stake is non-adversarial and assume that nobody bothers

to create 1000 adversarial network nodes (with 0 stake each)”.

36

https://www.securityweek.com/http2-implementation-vulnerabilities-expose-servers-dos-attacks

7.2 Kademlia

Kademlia [MM02] is an approach to creating distributed hash tables, which helps with random-
izing peer choices to minimise the risk of node eclipse in proof-of-work systems. Avoiding
eclipse in PoW requires a node to associate with a majority of non-adversarial peers. Thus an
adversary will attempt to bias a node’s selection of peers (towards other compromised nodes);
Kademlia aims to prevent this. Several variants of Kademlia exist (e.g. ”secure Kademlia”);
overall, however, the Kademlia literature concludes this is not a robust solution to the problem
of eclipse [MHG15]. In fact there is no argument that even with various enhancements the
algorithm in fact achieves anything, with any particular threat model.

Integrated into the algorithm for using the distributed hash table is functionality for con-
structing and managing a peer-to-peer connectivity graph. This functionality can be extracted,
albeit with some necessary remaining vestiges67. Ethereum uses a variant of S/Kademlia.

A 2018 paper [MHG18] analysing Ethereum’s Kademlia implementation nevertheless demon-
strated a number of different eclipse attacks requiring minimal resources. The countermeasures
suggested by the paper authors mean that instead of two machines being required to execute
the attacks, thousands are required. Nevertheless, thousands of machines are only a modest
expense when ”borrowed” as part of a botnet.

The paper authors’ commentary on the choice of Kademlia for Ethereum is instructive:

“The Ethereum developers state that the Ethereum peer-to-peer network protocol is
based on the Kademlia DHT. However, the design goals of the two are dramatically
different. Kademlia provides an efficient means for storing and finding content in
a distributed peer-to-peer network. Each item of content (e.g., a video) is stored at
small subset [sic] of peers in the network. Kademlia ensures that each item of content
can be discovered by querying no more than a logarithmic number of nodes in the
network. By contrast, the Ethereum protocol has just one item of content that all
nodes wish to discover: the Ethereum blockchain. The full Ethereum blockchain
is stored at each Ethereum node. As such, Ethereum’s peer-to-peer network is not
needed for content discovery; it is only used to discover new peers. This means that
Ethereum inherits most of the complicated artefacts of the Kademlia protocol, even
though it rarely uses the key property for which Kademlia was designed.”

In addition to the unnecessary complexity and the problem of eclipse attacks, Kademlia is not
well suited for constructing connectivity graphs for low latency data dissemination. Kademlia
constructs graphs with a bounded hop count, but the hops that it picks are completely unrelated
to the network distance between nodes. This unhelpful property is not easy to change because
Kademlia is fundamentally based around – and self-optimises for – a notion of distance (in
a virtual metric space) that is unrelated to physical network distance. This can mean that a
path from London to Dublin goes via Sydney, or worse since the typical path length will be
considerably more than two. This problem could perhaps be solved by yet another overlay, but
see Section 11.5 on the drawbacks.

Proof-of-work systems must rely to some extent on what peers report about other peers68

(note that this requires nodes to have stable identities) see Section 6.3.2 on eclipse attacks.
Cardano does not need this because the stake-based leader selection means that an adversary
cannot spoof blocks; it can only reduce the chain growth quality. Thus the intended benefits of
Kademlia (over and above the use of gossiping) are not required for Cardano.

Conversely the randomisation of the node topology imposed by Kademlia works against the
timeliness of data diffusion and thus reduces the performance and security of Cardano. This is
evidenced by the block distribution data from Ethereum in Section 6.2.2.

67The equivalent of DHT lookup is needed to maintain the routing tables
68We could refer to this as ‘transitive trust’.

37

Kademlia introduces considerable complexity: a month-long study was performed early in
the design cycle that concluded that validating a Kademlia implementation would be extremely
hard, and debugging any issues that arose in deployment even harder. At a minimum it would
require adding the peer selection via ∆Q, which is not native to Kademlia.

Kademlia is designed to work over UDP, which typically fails to reach nodes behind
NAT/Firewalls (see for example https://geth.ethereum.org/doc/Connecting-to-the-network,
where the instructions are clearly directed at technically savvy users only). Dealing with this in
a smooth way, transparent to end-users, would require a fall-back TCP connectivity mode. Our
preferred solution is to avoid this complexity by using TCP only.

There are three available Haskell implementations:

• The original one on hackage:

– This leaves “some of the implementation details, like timeout intervals and k-bucket
size, for the user.”

– It has several open issues dating back to 2015, which does not inspire confidence in
the quality of the code.

• The Serokell derivative of this:

– This was included in the cardano-sl codebase but proved unsuitable for use in pro-
duction.

• A new implementation that the networking team started in 2018 but after at least a month’s
work decided to abandon because the peer validation and veracity mechanism was proving
too complex and had significant problems.

Thus, no suitable ‘off the shelf’ implementation is available.
In summary, Kademlia:

• Adds huge complexity, both in coding and testing

– No suitable off-the-shelf implementation

• Delivers no specific benefits to Cardano

– Peer discovery ‘gossiping’ function very simple to implement by itself

* Kademlia approach is providing design inspiration for this part

7.3 PolderCast

PolderCast [SvVV12] is a pub/sub system designed to support large numbers of “topic” chan-
nels, each with a few publishers and many subscribers, and aims to exploit variability in topic
popularity. PolderCast is designed to support a large number of pub/sub topics while keeping
the in/out-degree of each node to a reasonable number. Its experimental performance evaluation
assumes that topics only cover a small fraction of nodes in the system69. This is not a good
fit for Ouroboros which requires only two topics – blocks and transactions – but all nodes are
interested in blocks and the vast majority are interested in publishing transactions.

As discussed in Section 5.1.1, pub/sub systems do not have the appropriate properties
to support chain sync. However, there is another aspect of that could be of interest – that of
topology creation.

69In the Facebook and Twitter datasets no topic ring covers more than around 5% of the 10,000 nodes.

38

https://geth.ethereum.org/doc/Connecting-to-the-network
https://hackage.haskell.org/package/kademlia-1.1.0.0

PolderCast uses a three-level approach to creating topology: rings (which are per topic – to
support deterministic distribution), with two additional topology mutators aimed at reducing
path length and ring-reconstruction under node churn. Its primary use case (major motivating
example) is that of social networking.

We have examined the PolderCast topology construction approach, but Ouroboros represents
a pathological case from its design perspective. It can either be seen as a single topic or as a
topic per potential slot leader – each of which contains the total population of all nodes (both
wallets and slot leaders). PolderCast is designed to support connectivity models (i.e. strongly
connected graph components – “super nodes”) that occur in ‘small world’ [Wat99] networks, of
which social networks are a good example.

It creates a ring per topic and uses the non-uniformity of the user base’s participation in
a topic to derive proximity (a measure of “interest locality”) which, in turn, is used to drive
one of the mutators that creates probabilistic short cuts. This non-uniformity is absent in the
Ouroboros use case. It should be noted [SvVV12, Section 5.4] that whenever PolderCast uses a
“gossip” list (not one of the ring) to communicate with a peer it removes that peer association70,
re-establishing it only when it receives a new message. This removes the ability of a node to
sequence the messages from another peer, which is essential for Cardano in order to be able to
validate them correctly.

There is no consideration in their model for optimising the overall timeliness of the distri-
bution of messages. Their “fast dissemination latency” assertion is based on hop count, which
is “typically of the order of the log of the topic subscribers”. It would appear (on the basis of
the description of their construction mechanism) that the base of the log used is ˜2. Note that
their simulation results in [SvVV12, Section 6.4] (fig 8) appear to relate over the total population
of all their topic sizes, which from [SvVV12, Section 6.2 fig 7] are for (relatively) small topic
population sizes (hundreds to a few thousand) compared to the target population size for
Cardano – 10k-100k+ total nodes.

There is no evaluation of effectiveness of the system in the presence of adversarial network
conditions and/or behaviour – it appears their reachability completeness results are assuming a
‘failure-free’ operational environment (although nodes may drop out and rejoin).

Indeed, the topology construction (which is node identity aware) would imply that two
cooperating nodes (especially those that have the additional cross connect path) – knowing their
relative relationship – could conspire to dramatically increase the dissemination path length or
even partition the network at will.

There doesn’t seem to be any inherent advantage to adopting a PolderCast style topology
construction over assuming a random graph and appealing to the various phase transition
properties (including characteristic path length) described in [Wat99].

Furthermore, the basis of a pub/sub system is that subscribing to a channel implies a
willingness to accept everything published on that channel. Thus, PolderCast has no means of
managing node resources at either the network or data storage levels, which arms a range of
denial-of-service attacks.

7.4 Summary of comparison

Dandelion Kademlia PolderCast

Advantages Reduces the ability
to deduce the source
of transactions

Resistance to eclipse
(irrelevant in
Cardano)
Peer discovery

Automatic creation
of topic rings;
supports many
different channels

70The shot-cuts are single use only.

39

Dandelion Kademlia PolderCast

Timeliness Makes worse Makes worse Renders unachievable
Adversarial
peers

No mitigation impact Some resistance to DoS No mitigation impact

Resource exhaus-
tion

No mitigation impact No mitigation impact Pub/sub creates vulner-
ability

Effort required to
make suitable

Moderate Substantial: one month
spent already

Substantial: fundamen-
tal assumptions are mis-
aligned

8 Operational environment and constraints

Cardano Shelley should be realisable on various platforms and scales of resources, from large
stake pools processing many transactions and frequently creating blocks, to exchanges and,
ultimately, individuals, either creating (occasional) blocks or simply running wallets.

Cardano Shelley should also be usable by enterprises, so it must meet corporate governance
criteria, including regulatory constraints, and should operate across a DMZ.

It should support many deployment scenarios without requiring much specialist expertise,
and run on standard operating systems without requiring kernel modifications or parameter
changes, including:

• Windows

• Linux

• MacOS

It should support a range of connectivity types:

• Consumer broadband

– Implying firewall and NAT (domestic and carrier) traversal71

• Datacenter networks

• Wide-area networks

– IPv4 and IPv6
– Other bearers

• Intra-machine IPC

– Avoiding ‘TLS hell’

It should be executable without consuming excessive72 resources:

• CPU

• Memory

• Network interface capacity

• TCP ports

• Storage
71This essentially forces us to use TCP as the underlying transport mechanism.
72We take a T2 Medium AWS instance as representing ‘reasonable’ resources for a full node.

40

8.1 Data diffusion targets

The fundamental task of the data diffusion function is to distribute blocks amongst peers in a
timely fashion. Failure to deliver on time should be rare, even under adverse conditions. We are
assuming that Ouroboros Praos will aim for the same rate of block production as Ouroboros
Classic73 by aiming for a slot time of 1s and a slot occupancy of 5%. Allowing the Praos ∆
parameter to be ˜5 gives a target for block distribution of X% of peers reached within 5s. For
well-connected core nodes, the business requirements of 11.1 provide the following targets:

Threshold > 95%
Target > 98%
Stretch > 99%

This should be achieved even when blocks are all ‘full’, as constrained by the on-chain pa-
rameter. The hazard that arises otherwise is that there will be a turning point in the performance
curve, which could lead to throughput collapse and excessive forking of the chain. Note that
this implies a bandwidth74 of 100kb/s, which is roughly 1Mbit/s, even in the ‘super-stretch’
scenario where 2Mb blocks emerge (on average) every 20s.

The network component is also responsible for diffusing transactions so that they can be
incorporated into blocks. There is no benefit in transporting more transactions than can be
incorporated into the chain, so the maximum bandwidth that needs to be sustained is the same
as for diffusing blocks.

8.2 Fundamental tradeoffs

The intrinsic nature of any distributed consensus process (as discussed in Section 5.6 above)
creates a series of fundamental tradeoffs that need to be managed:

• Between geographic spread and minimum slot time and ∆;

– A consistent view can be created more quickly if the participating nodes are physically
close together, so that there are lower delays in exchanging information;

• Between transaction size (50 bytes - 10’s kbytes) and transaction rate75;

– Larger transactions take more space in the block, so fewer of them can be incorporated
in any given slot;

• Between node valency, path length and network capacity;

– A higher valency (more connected peers) reduces the number of hops that information
must travel, but increases the consumption of available network capacity at a node76;

– A larger number of hops reduces the time that any individual hop can be allowed to
take and hence demands more network capacity to deliver the information quickly
to the next node;

– Both of these drive up the peak capacity requirement at a node.
73We assume that relaxing these constraints substantially – which would lead to Shelley having much lower trans-

action throughput and longer settling times – is not acceptable from a business/community acceptance perspective.
74Note that this is required for any node (even a wallet) to keep up with the maximum rate of chain growth.
75Transaction bytes per second might be a better measure than transaction rate.
76Increasing average node valency has diminishing returns, such that values beyond 20 are probably not justified.

What is more significant for the characteristic path length is the variance of node valency - i.e. some nodes have
substantially more chain-following subscribers, e.g. in the hundreds.

41

Table 6: Transaction size as a function of block size and transactions per second

transactions per second
Block size (MB) 2 5 10 20 50 100 200

0.064 1661 665 332 166 66 33 17
0.128 3323 1329 665 332 133 66 33
0.256 6645 2658 1329 665 266 133 66
0.512 13291 5316 2658 1329 532 266 133
0.768 19936 7974 3987 1994 797 399 199
1.024 26581 10633 5316 2658 1063 532 266
1.536 39872 15949 7974 3987 1595 797 399
2.048 53163 21265 10633 5316 2127 1063 532

Table 6 shows the effect of transaction rate and block size on the resulting average transaction
size (in bytes), assuming a 20s average block interval.

It can be seen that high transaction rates limit the transaction size, even with large blocks.
Also there are combinations that are infeasible for different uses. A transaction has a absolute
minimum size of 305 bytes77 (single input UTxO to single UTxO), a “useful” one (1 input to
two outputs) 361 bytes. Coin selection (for privacy enhancement) uses multiple inputs and
multiple outputs, and exchanges look for large numbers (50+) and transactions sizes in the 8k+
range. Envisaged future uses (Plutus / Marlow) will bring with them their own characteristic
transaction size distributions.

8.3 Adversarial power and knowledge

Following established best practice in security design, we assume the adversary knows every
detail of how the system works (i.e. has access to the code); this means any weaknesses may be
exploited, including ‘auto-immune attacks’, in which the mitigation for one attack opens up a
vector for another. We assume the adversary is not a Tier-1 actor and does not have access to
secret keys, but may have access to resources to mount denial-of-service attacks.

In common with the design of Ouroboros, we assume that any Cardano peer may be
adversarial, and so cannot be trusted. It follows that we cannot trust anything they tell us
about other nodes either, i.e. there is no ‘transitive trust’. The avoidance of the construction of
hegemony also implies that we cannot rely on something like a standard public key infrastructure
(PKI).

We assume that power outages, network connectivity failures, routing table failures etc. can
occur, but can’t be predicted or correlated by an adversary. An adversary might exploit them
when they occur, however.

8.4 Stake distribution

Assuming that stake pools exhibit rational behavior, we expect of our delegation design78 that
roughly 100 - 1000 peers will hold at least 80% of the total stake.

77At least in the benchmarking environment, which is using the simplest forms of transaction (correct at time of
writing).

78https://hydra.iohk.io/job/Cardano/cardano-ledger-specs/delegationDesignSpec/latest/download-by-
type/doc-pdf/delegation design spec

42

8.5 Graceful degradation

In order to maximise the chances that Cardano/Shelley will survive a major incident, we need
to implement a precedence order of failure. This means prioritising:

1. The system as a whole over any individual node;

2. Large nodes (in terms of stake) over small nodes;

3. Nodes that create blocks over those that do not;

4. Blocks over transactions.

8.6 Backward compatibility and extensibility

While Shelley aims to be more efficient than Byron, it must still be possible to communicate
between the two different versions of Cardano in order to enable a smooth transition. Thus it is
essential to be able to construct a proxy that can translate between the old and new protocols.

More generally, in the expectation that Cardano will continue to evolve, it is important to
have a framework that is flexible and extensible to support new features without requiring a
hard fork. It is also desirable to provide a clean boundary between the network component and
the consensus component, so that they can be developed, tested, and evolve independently.

9 Key design decisions

Creating an efficient implementation of an algorithm79 requires dealing with real-world compli-
cations. This adds detail to the interactions and creates new possibilities for adversarial behaviour to
subvert the algorithm80 (the attack surface).

Ideally we would prove that even with the new ways that the adversary can interact with
honest nodes, that the network information exchange requirements can still be met with bounded
resources.

In the Shelley iteration we will not aim to formally prove this. It is, however, a design
goal to be able to construct informal arguments that the design meets its information exchange
requirements in bounded resources in the presence of adversaries. Thus, throughout the
implementation process we need to take care to:

• minimise the increase in the attack surface, and

• mitigate against any increase that we cannot avoid.

We call this threat-aware design.
Following the threat-aware principle while respecting the targets and constraints of Section 5

has led to mutually reinforcing design decisions for the data diffusion component. The most
important are:

• Peer-with-peer communication;

• A DoS-resistant network architecture;

• A development approach exploiting the capabilities of Haskell;

• The use of abstract multiplexed point-to-point bearers;

79For Ouroboros, an example would be broadcasting blocks rather than complete chains.
80For instance the constraint that buffers for data need to be of a finite size creates the (frequently exploited)

potential to overrun them.

43

• Managing the network topology with a demand-driven spanning tree;

• Using a compositional, polymorphic, typed protocol framework;

• Continual, automatic performance assessment and optimisation.

9.1 Stateful implementation

As noted in Section 5.1.3, the option to have a connection-oriented stateful protocol enables
protocols that rely on an amortised analysis for their resource bounds. Establishing resource
bounds at all is difficult, especially while balancing the other priorities, such as achieving good
performance by making effective use of available network bandwidth and latency hiding. In
the chosen network design, this extra flexibility has proven useful for the transaction submis-
sion protocol. Here we revisit the stateless/stateful question again from an implementation
perspective.

The primary advantage of using stateless protocols is that there are more available frame-
works and off-the-shelf implementations, especially in the category of HTTP and RPC imple-
mentations. The hope of course is that this can save development effort, increase flexibility and
reduce maintenance costs. So it is worth reviewing the issues involved in selecting an existing
implementation, stateless or stateful.

The most immediate constraint is that the implementation – not just the protocol in principle
but the actual implementation – must be designed for an adversarial environment, including
asymmetric resource attacks. However, the bulk of off-the-shelf protocol implementations are
designed for business information processing applications within a corporate network or data
centre, rather than for use on the open internet. For example ZeroMQ was designed for use in
data-centres and its documentation used to warn explicitly against running it over the public
internet, though it is now more sanguine81. Facebook’s Thrift and Google’s gRPC are similar
in that they are derivatives of their respective internal data centre RPC frameworks. This does
not exclude them, but highlights that careful scrutiny is required to ensure that they have been
made sufficiently safe and robust to be open to the public internet. There are examples on the
stateful side too: the widely used message broker RabbitMQ for example is not recommended
for anonymous untrusted access from the internet.

The most obvious example of a stateless protocol with many reasonable implementations
that are fairly resistant to adversarial behaviour on the public internet is HTTP. Over the years,
HTTP implementations have faced trial by fire, and repeatedly been found wanting (e.g. the
slowloris asymmetric resource attack), but there are now many reasonable implementations82.
Using a good HTTP implementation is not enough of course; the slowloris attack, for example,
is now primarily an application level attack83.

The most obvious example of a stateful protocol with good implementations that are pretty
resistant to adversarial behaviour on the public internet is TCP. TCP is of course extremely widely
supported, in software support, tool support and in the physical infrastructure of the internet.
Furthermore it is supported in every OS and receives updates for security and performance
issues.

81It now claims not to crash with malformed packets but makes no claim about resource attacks or actually being
recommended to use over the public internet.

82In 2012 the venerable Apache web server 2.4 release finally changed the default MPM on unix so it now avoids
the slowloris attack

83Services offering slowloris protection exist, e.g. https://www.cloudflare.com/learning/ddos/ddos-attack-
tools/slowloris/

44

https://en.wikipedia.org/wiki/Slowloris_(computer_security)
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/

9.2 Peer-with-peer

A typical ‘peer-to-peer’ application such as BitTorrent or PolderCast establishes a forwarding
graph between nodes and then forwards data as rapidly as possible without much, if any,
regard to its validity (this is regarded as the problem of the ultimate recipient). This approach
would be catastrophic for Cardano, however, as it would enable an adversary to amplify a
resource exhaustion attack - one adversarial node can consume resources of many honest nodes
in forwarding junk data.

The key threat-aware design principles of:

1. Detect and disconnect adversarial peers

2. Control resource consumption

lead to a different model, which we call ‘peer-with-peer’ to distinguish it from the typical
peer-to-peer approach. In order to prevent adversarial amplification we must exploit the
semantic content of the information exchanged (i.e. its meaning in the context of the current
state) to:

1. detect aberrant behaviour and

2. manage resource consumption exposure84.

The assumption that no peer can be trusted leads to three fundamental design decisions:

1. Only forwarding validated information;

2. Strictly controlling the potential for resource consumption;

3. Not forwarding information about other nodes.85

9.2.1 Validated forwarding

Nodes are responsible for the validity of forwarded messages. In particular, messages must be:

• well-formed syntactically, and

• semantically valid in the context of previously forwarded information from that peer (as
determined by the consensus component):

– Blocks in order on their chain

– Transactions

* in submission order

* compatible with UTxO and other recent transactions

If a peer fails to meet these requirements it is considered adversarial and the connection to it
is dropped. This means that block and transaction relaying must be interleaved with validation.
Without this the system is trivially vulnerable to adversaries broadcasting nonsense, using up
everyone’s bandwidth and thereby executing a DoS attack on the whole system.

84For an example of the consequences of failing to validate information before forwarding it, see:
https://www.theregister.co.uk/2019/08/20/centurylink outage report fcc/

85Apart from their addresses, which a node can use to attempt to form new connections.

45

https://www.theregister.co.uk/2019/08/20/centurylink_outage_report_fcc/

Consequently, there is no network ‘layer’86 that sends messages (blocks or transactions)
from one node indirectly to other nodes. The network component only sends messages from
one node to a direct peer, and those messages go up to the application logic level (consensus,
mempool etc)87.

Note that it is a misunderstanding to think that block validation logic is ‘pushed down’
into the network layer. They are clearly separated, but there is an interleaving in the data flow.
How this is done in the design is discussed in full detail, with justification and a diagram, in
Section 5.1 and Section 5.2.

9.2.2 Demand-driven protocols

Protocols are designed in a demand-driven style, so that for each node and each peer connected
to that node, the node controls the rate of data arriving, the maximum concurrency, and the
amount of outstanding data. This prevents an adversarial peer from mounting a resource
consumption attack: if it obeys the protocols, its ability to consume resources at the node is
bounded, and if it violates them it will be disconnected. Of course, initial connection requests
cannot be bounded by the protocol, but the rate at which they are accepted can be limited.

Controlling the potential offered load is also a prerequisite for managing timeliness, since it
constrains the amount of queuing delay that can build up.

Note that this pull-based, data-consumer driven approach provides a degree of control that
is absent from a pub/sub system, in which a subscription gives implicit permission to send an
arbitrary amount of data; rate-limiting such data destroys its timeliness. Thus in a pub/sub
system an individual node can arm the hazard of failing to meet delivery deadlines for the
system as a whole.

The principle that no peer can be trusted implies that any information it supplies about
other nodes cannot be trusted either, so there is no value in sending such information. Thus
approaches such as reputation scores to assess trustworthiness of nodes cannot be employed.
Each node trusts only information that it can verify itself.

9.3 Network architecture

The approach to mitigation of bearer-level DoS attacks is to defend core nodes, meaning the
top stake pools and the transitional block-producing nodes operated by IOHK, by surrounding
them with sacrificial relays.

The IP address of the core node is not published88, making it difficult to attack; and if relays
are attacked they can be replaced with new ones having different IP addresses (which can be
published to other nodes via mechanisms such as dynamic DNS). This is embodied in the figure
below:

86In networking literature ‘layer’ is often used as a technical term that includes the idea that information can be
delivered indirectly to other nodes, and that the delivery takes place within the network layer. In this document we
use the term layer with a more colloquial meaning that is synonymous with the term component.

87Note that this necessarily rules out direct re-use of many network algorithms and implementations. At best one
would have to figure out how to integrate block validation with variations of existing algorithms.

88It could be shared with other core nodes that are considered trustworthy so that they can communicate directly.
An alternative is not to hide the IP address, and rely on firewalls instead. However, care must be taken since some

cloud services implement the firewall mechanism on the host rather than within the network, and in this case the
host would still be open to bearer level attacks.

46

9.4 Development approach

To deal with the threat of an adversary who knows the code (which is inevitable for an open-
source project), two methods were used to eliminate implementation errors:

1. Make maximum use of the Haskell type system;

(a) Using a simple version of session types89;

2. Build on the idea of an executable specification by being able to run the actual code in a
simulated mode, which enables;

(a) control over entropy and timing for reproducibility;

(b) regression testing;

(c) trying out worst-case scenarios.

9.4.1 Session Type Framework

An important feature of any protocol design is avoiding deadlock, in which both parties are
either waiting for something or trying to send something to the other at the same time. The
solution in Shelley is agency management, in which exactly one peer has agency at any time,
enforced by the Haskell type system. This approach avoids deadlock while allowing pipelining,
which overcomes the effect of bearer latency on performance-critical protocols. Pipelining can
be implemented without changing protocol description or the server implementation – only the
client side of the code has to be altered.

This is achieved using a Session Type framework, in which protocols are described as state
machines encoded into Haskell types. The implementations that engage in these typed protocols
are required to respect the protocol description, and this is enforced by the types. The state
machine descriptions are constrained so that in each protocol state only one peer may send,

89Session types: https://groups.inf.ed.ac.uk/abcd/

47

https://groups.inf.ed.ac.uk/abcd/

while the other must receive. This guarantees that the protocols are free from race conditions or
deadlocks. This eliminates a class of bugs and makes testing significantly easier.

The session type framework was also developed to allow the construction of polymorphic
protocols: protocols which can be instantiated with different concrete data, e.g. the developed
chain sync protocol is independent of the block type90 which allows it to be used for different
ouroboros protocols like Ouroboros-BFT or Ouroboros-Praos. Applying types to protocols rather
than channels allows the channels to be polymorphic, so that there is no need to create a separate
channel for each protocol.

The session type framework has been tremendously helpful in the design phase of each mini-
protocol. It allowed us to communicate and discuss concise ideas, both within our own team
and to other teams (e.g. the Wallet team). This is similar to the way other teams are using
mathematical notation to precisely formulate and communicate ideas. The difference is that
we used the strong type system of Haskell to encode protocols with mathematical precision,
providing proofs of their correctness. We can also write tests for the protocols without running
them on a network or using multiple threads.

9.5 Point-to-point bearers

The idea is to use a single ‘bearer’ between peers over which all interactions are multiplexed.
This allows us to control the resources that can be consumed at a node by any connected peer,
thereby minimising the scope for resource consumption attacks, including peer-related denial-
of-service attacks. This has the downside of making the RTT more of a problem for performance,
which we manage with pipelining (see Section 5.3.4). We apply backpressure to manage edge
conditions, while minimising head-of-line blocking effects91 by means of explicit multiplexing
on the bearer. This gives us control over precedence of delivery and the emergent properties of
the bearer by having the point of contention within the local node’s domain of control.

The abstract notion92 of a ‘bearer’ carrying a single ordered stream allows a range of con-
nectivity types to be accommodated, from local sockets to satellite links. Although the initial
wide-area bearer will be TCP, this generic approach means that other interprocess commu-
nication mechanisms can be used. For example communication between different processes
(e.g. wallet backend) and the node can be done entirely within the security confines of a single
machine.

This also accords with the ‘minimise resource usage’ principle expressed in Section 5, by
using only one TCP port per connected peer. Also, using a uniform abstraction reduces the
attack surface.

9.6 Demand-driven spanning tree

The set of nodes that blocks need to reach quickly is given by the stake distribution/number of
stake pools. The block distribution time then depends on the topology of the peer interconnec-
tions between these nodes. As discussed in Section 5.6, Cardano nodes can detect eclipse attacks,
unlike PoW systems such as Bitcoin, and so the Kademlia approach of enforcing randomness
on the connectivity graph to make such attacks more difficult is not required. A more pressing
requirement for Cardano is to limit the number of hops blocks must traverse93, and so the
decision was taken to use a demand-driven spanning tree approach, in which each node makes

90It is also similarly independent of the codec (transformation between concrete and abstract syntax).
91Failure to clear the queues by reading from the TCP socket will cause the receive window to fill up and the

sender will stop sending more data. No data is lost and no packets are retransmitted, but no progress is made.
92Following the principle of compositionality,
93So that the per-node hop time target is achievable for a globally distributed system: this is discussed in more

detail in the Annex.

48

independent choices of which of its peers to download new data from. Each node maintains a
local list of peers, divided into three sets:

State Definition

Cold A ‘cold’ peer is one which the node is aware of but has not
yet connected with

Warm A ‘warm’ peer is one that the node has established a bearer
connection with, and is following its chain, but is not cur-
rently using to obtain new blocks or transactions

Hot A ‘hot’ peer is one that the node is actively using to obtain
blocks and/or transactfions

Peers delivering data that is incorrect or late are rapidly deselected, i.e. removed or demoted
from ‘hot’ to ‘warm’. The ‘cold’ set is populated at start-up (as described in Section 5.7) and
refreshed by lists of addresses provided on connection with peers. A node will move peers
between these sets in response to receiving (or not) the number of well-formed blocks that it
expects. Ultimately, if this fails (which could indicate a possible eclipse attack) it will have to
return to its bootstrap procedure to obtain new ‘cold’ peers.

While it is important to minimise block propagation time, it is also important to avoid
forming cliques (strongly-connected subgraphs) because this creates the risk that the network
could be partitioned by the loss of only a few bearers. This means some ‘warm’ peers will need
to be ‘far off’ (i.e. kept in the set even if they perform poorly).

As discussed in Section 5.6, one constraint is the total capacity of the network interface of
a node. Each connected peer that is downloading blocks from the node will consume up to
˜1Mbit/s. Thus a ‘domestic’ node with a 10Mbit/s uplink capacity could not accept requests
from more than 10 peers. In extreme cases it might only serve blocks it generated itself!

9.7 Protocol framework

9.7.1 Compositionality

Shelley fundamentally improves on Byron by having a compositional design. This strong form of
modularity means that separate aspects of each protocol’s behaviour, resource consumption,
and robustness can be designed and reasoned about independently.

The protocol framework is designed to maximise compositionality by using independent
‘mini-protocols’ for distinct functions (sidestepping the typical combinatorial complexity ex-
plosion) so that no single protocol becomes too complex to reason about. Key mini-protocols
are:

• Bulk block sync

• Chain following – filter useful interactions to the consensus component

• Transaction submission

A separate function called ‘the Mux’ multiplexes these mini-protocols onto a point-to-point
bearer for each connected peer node. This provides a common approach to version control,
managing load and controlling resource consumption using isometric flow control.

The wireformat used by Mux is simple and compact which gives a low overhead, both in
bytes over the network and in CPU cycles94.

94Note that the efficiency of the encoding is important as it affects the network interface capacity required, which
in turn constrains who can effectively run a Cardano node, as discussed in Section 8.2

49

9.7.2 Structured information exchanges

A naive implementation of Ouroboros would transmit far more data than strictly necessary,
making it impossible to meet the timeliness constraint. Thus an important design approach was
to analyse the information exchange requirements (IERs) and then map these onto data transfers
in the most efficient way, while avoiding opening up opportunities for adversaries to attack the
system. This is described above in Section 5.1

Resulting design decisions include:

• Exchanging blocks rather than broadcasting chains;

– All practical consensus algorithms do this – it is simply a mathematical convenience
to formulate the Ouroboros algorithm in terms of broadcasting chains;

• Interleaving forwarding with validation

– To prevent adversaries consuming resources by sending invalid data;

• Sending block headers ahead of whole blocks, using the chain-sync protocol;

– this allows a node to decide whether it needs to download a full block;

– if it does it can choose which peer to download it from;

• Sending transaction IDs ahead of full transactions;

– Request a number of transactions;

– Receive a set of (short) transaction IDs and sizes;

– Request a subset of those transactions.

Details of these protocols can be found in the second part of the design documentation.

9.7.3 Protocol polymorphism

A key point is the separation of:

• codec

• channel, and

• consensus logic

This enables early and thorough testing ahead of the integration of the parts.
The protocol driver takes the codec as a parameter, which allows for different choices of

encoding. Codecs themselves can also be polymorphic, for example in the type of blocks
or transactions. This aids in enabling the consensus and network layer combination to be
parameterized by the choice of the ledger rules and representation. Allowing different choices
of ledger rules improves the future flexibility and enables reuse of these components in other
products.

The protocols are also polymorphic in the consensus algorithm, which provides a clean
separation of concerns between the components and allows consensus algorithm evolution
without changing the data diffusion code.

50

https://ouroboros-network.cardano.intersectmbo.org/pdfs/network-spec

9.8 Performance assessment and optimisation

The strict timeliness constraints of block diffusion means that the data diffusion component
must constantly monitor and optimise performance. Each node evaluates the performance of
its peer connections by measuring their ∆Q [TD20], at both the bearer and mini-protocol levels.
This enables efficient performance-optimising decisions by the mini-protocols; for instance, the
block-fetch protocol can select between several different peers offering the same block(s) on the
basis of which would be expected to deliver soonest based on their measured ∆Q.

Congestion between each pair of nodes is managed by the Mux function, and overall
congestion at the network interface of a node is bounded by isometric flow-control (meaning that
the potential outstanding traffic is limited)

The ‘topography’ is the combination of topology and performance. Performance is a function
of both capacity and distance, because achievable TCP download speeds depend on the round-
trip time (RTT) of the bearer (this is discussed in more detail in Section 11.2). The goal is to
optimise the topography of the data diffusion network, not just its topology.

9.9 Summary response to threats

Here we summarise the responses to the threats discussed in Section 6.3 embodied in the Shelley
network design.

Threat Response

Adversarial peers Detect adversarial behaviour (including poor performance)
and drop the connection to that peer

Resource exhaustion
attacks

Structure protocols so as to strictly bound the resources that
any connected peer can consume (attempting to consume
more than the protocol allows would be adversarial, see row
above)

Tier-1 actors Ensure nodes are sufficiently distributed and diverse so that
no single tier-1 actor can isolate a large proportion of the
total stake

Bearer-level attacks Design the network architecture so that large stake-holding
nodes are defended against DoS attacks

9.10 Bootstrap

Note that the problem of NAT/firewalls means that there is no way to construct a network
without at least some nodes having accessible public IP addresses. A new node joining the
network needs to be able to find these addresses. This can be achieved in different ways,
depending on the deployment scenarios:

• The node can be provided with IP addresses in a configuration file;

– This would be the default option for an exchange or stakepool node, or in an enter-
prise setting;

• The node can be provided with DNS names in a configuration file;

– This would be the default option for smaller nodes, including wallets

Once a node has succeeded in connecting to one peer, that peer can provide addresses of
other peers that it knows; note that the receiving node does not need to trust the addresses that

51

it is given, as it can try them out for itself and make dynamic decisions about which peers it
uses as described in Section 5.7. This exchange of information about (the addresses of) other
nodes is called Peer Sharing, and is required for the fully decentralised version of Shelley. The
implementation that will be taken here is inspired by Kademlia, but can be far less complex.

10 Outstanding and unresolved issues

10.1 Cold/black start scenarios

Cold start scenarios arise when some event has taken all block-producing nodes and other
intermediate nodes offline for some time. Examples include natural disasters such as solar
storms, or catastrophic software or configuration failures.

In such a scenario, restarting the system cannot be achieved by the network layer alone.
These scenarios break the assumptions of Ouroboros and handling them may require Ouroboros
protocol modifications, and may also require additional out-of-band communication between
stake pool operators. This requires further analysis.

10.2 Resources and decentralisation

The size ratio between empty and full blocks is more than 3000, and to create full blocks a
similar amount of data must be moved in transactions. Thus the minimum amount of data to be
received by each node varies from ˜1kb/20s (system idle) to ˜2Mb/20s (leaf node) to ˜4Mb/20s
(full node). The amount of data transmitted by a full node will exceed this in proportion to the
number of peers downloading from it.

This creates a risk (which occurs in practice in other industries) that the capacity of nodes
may be dimensioned on the basis of historical ‘typical’ load (i.e. mostly empty blocks), so that if
a burst of large transactions occurs requiring full-sized blocks to be created, such nodes will not
be able to keep up. If such load is sustained, the integrity of Cardano might be at risk.

This is an example of a hazard which, although it appears distributed, has a correlate
(and part of potential normal operation) criteria for arming that hazard, with an associated
reputational risk. Although there are node configuration parameters to contain this problem,
their correct use cannot be enforced once the system is decentralised

There are a number of non-technical risks related to third-party behaviour in Ouroboros/Cardano
related to the operation of stakepools. Typical industry practice for handling this is to create
a certification / conformance programme, i.e. tie this into aspects of branding. Assuring the
veracity of stakepool holders claims about the resource allocation and other stakepool operation
is, perhaps, something that the Cardano Foundation could help manage through a suitable
conformance / certification programme.

11 Annexes

11.1 Business requirements

The high level business requirements reproduced below were signed off in late 2017.
They are expressed in informal prose, often following a “user story” style. Roughly, there

are three kinds of users:

1. users who have delegated,

2. small stakeholders, and

3. large stakeholders.

52

11.1.1 Network connectivity

Participate as a user who has delegated As a Daedalus home user with my stake delegated to
other users I would like to join the Cardano network so I can participate in the network.

1. The system must be designed to provide this user segment with the ability to catch up and
keep up with the blockchain without having to do any local network configuration.

2. The system must be designed to provide this user segment with the ability to continuously
find and maintain a discovery of a sufficient number of other network participants that
have reasonable connectivity.

3. The system must be designed to provide this user segment with the ability to find and
maintain a minimum of 3 other network participants to maintain connectivity with perfor-
mance that is sufficient to catch up with the blockchain.

4. The system design will take into account that this user will probably be behind a firewall.

5. Users in the segment can be defined by having all their stake delegated to other network
participants. As such they will never be selected as a slot leader (i.e required to generate a
block).

Participate in network as small stakeholder As a Daedalus home user operating a node with
a small stake, I would like to join the Cardano network so I can participate in the network as a
node that produces blocks i.e. my stake is not delegated to someone else.

1. The system must be designed to provide this user segment with the ability to receive
the transactions that will be incorporated into blocks (although sizing the operation of
the distributed system to ensure that all such participants would be able to receive all
transactions is not a bounding constraint).

2. The system must be designed to provide this user segment with the ability to participate
in the MPC protocol95.

3. The system will be designed to provide this user segment with the ability to catch up and
keep up with the blockchain without having to do any local network configuration (this is
a bounding constraint).

4. The user will have sufficient connectivity and performance to receive a block within a time
slot AND they have to be able to create and broadcast a block within a time slot in which
the block is received by other participating nodes.

5. The system will be designed to maximise the likelihood that 50% of home users operating
a participating node are compliant with the previous requirement at any one time.

6. The system will be designed to provide this user segment with the ability to continuously
find and maintain a discovery of a sufficient number of other network participants that
have reasonable connectivity.

7. The system will provide a discovery mechanism that will find and maintain a minimum of
3 other network participants to maintain connectivity with performance that is sufficient
to catch up with the blockchain.

8. The system design will take into account that this user may be behind a firewall (i.e being
behind a firewall should not preclude a user participating in this fashion).

95Note that this requirement is now redundant as the MPC protocol is required only for Ouroboros Classic

53

9. The Delegation workstream will provide a UI feature for the user to choose to control their
own stake.

10. Users in this segment will be defined as NOT

(a) being in the top 100 users ranked by stake or

(b) in a ranked set of users who together control 80% of the stake

11. Users in this segment will not be part of the Core Dif, but still subject to the normal
incentives related to creating blocks.

Participate in network as a large stakeholder As a user running a core node on a server and
with large stake in the network, I would like to join the Cardano network so I can participate in
the network as a core server node that produces blocks i.e. have not delegated to someone else.

1. A large stakeholder will be defined as

(a) being in the top 100 users ranked by stake; or

(b) in a ranked set of users who combined control 80% of the stake

2. Assuming that this user has sufficient connectivity and performance, the system should
ensure that the collective operation of the distributed system will ensure that they have a
high probability of receiving a block within a time slot such that they have sufficient time
to be able to create and broadcast a block within a time slot where the block is received by
other core nodes.

3. It is expected that the previous requirement will be fulfilled to a high degree of reliability
between nodes in this category – assuming normal network operations

Threshold > 95%
Target > 98%
Stretch > 99%

4. The system will be designed to provide this user segment with the ability to continuously
find and maintain a discovery of a sufficient number of other network participants that
have reasonable connectivity.

5. Discovery will find and maintain a minimum of 10 other network participants to maintain
connectivity with performance that is sufficient to catch up with the blockchain.

6. Ability to receive the transactions that will be incorporated into blocks.

7. Ability to participate in the MPC protocol96.

8. The user will catch up and keep up with the blockchain.

9. The server firewall rules will be such that it can communicate with other core nodes
on the system (and vice versa) – The system will provide the necessary information to
update firewall rules if the server is operating behind a firewall to ensure the server can
communicate with other core nodes.

96Note that this requirement is now redundant as the MPC protocol is required only for Ouroboros Classic

54

10. The threshold which defines the group of large stakeholders may be configurable on the
network layer. The configuration may include toggling between the rules a) and b) in the
previous requirement and the threshold numbers within these (this is pending a decision
from the Incentives workstream.

11. The rules and threshold configuration may need to be a protocol parameter that is updated
by the update system.

11.1.2 Network performance

Poor network connectivity notification As a home user, I want to see a network connection
status on Daedalus so that I know the state of my network connection.

• If the user receives a notification that they are in red or amber mode, Daedalus will give
the user some helpful information on how to resolve common connectivity issues.

There are three (at least) the following three distinct modes that the network can be operating
in: each one has a red, green, amber status.

Initial block sync
red receiving < 1 blocks per 10s
amber receiving < 10 blocks per 10s
green otherwise

Recovery
red receiving < 1 block per 10s
amber otherwise
green (not applicable)

Block chain following
red it has been more than 200s since a slot indication

was received.
amber it has been more than 60s since a slot indication

was received.
green otherwise.

This assumes that the slot time remains 20 seconds97.

Transaction Throughput The transaction per second of the system as a whole will be:

Threshold 8 tps
Target 16 tps
Stretch 50 tps

This assumes that the slot time remains 20 seconds.

Network Bearer Resource Use – end user control As a user operating on the network as a
home user not behind a firewall, I would like a cap on the total amount of network capacity in
terms of short-term bandwidth that other network users can request from my connection so I
am assured my network resource is not eaten up by the data diffusion function.

97Under Praos this should be interpreted as the average time between production of new blocks is 20 seconds.

55

1. The cap should be based on a fraction of a typical home internet connection – it can be
changed by configuration including “don’t act as a super node”.

2. The system will allow users syncing with the latest version of the blockchain to download
blocks from more then one and up to five network peers concurrently.

3. A cap on the number of incoming subscribers.

4. A cap on number of outbound requests for block syncing from other users.

5. The cap will not be imposed on core nodes running on a server.

6. If these resources are available, a reasonable connection speed should be available to users
requesting to sync the latest version of the blockchain e.g. downloading blocks from 5
peers concurrently to aggregate the bandwidth.

7. (nice to have) the actual number and capacity being used is available to users.

Participant performance measurement There may be a requirement for measuring if a large
stakeholder is not meeting their network obligation Brünjes et al. (2018).

It is accepted that this requirement is a “nice to have”, and it has not been established that it
is possible, nor has it been incorporated into the incentives mechanism.

11.1.3 Distributed System Resilience and Security

Resilience to abuse As a user I should not be able to attack the system using an asymmetric
denial of service attack that will deplete network resources from other users.

1. The system should achieve its connectivity and performance requirements even in the
presence of a non-trivial proportion of bad actors on the network.

2. There is an assumption that there are not large numbers of bad actors in the network.

3. The previous assumption does not follow from the assumptions of Ouroboros which states
that the users that control 50% of the stake are non-adversarial.

DDoS protection As a large stakeholder running a core node on a server, I should still be able
to communicate with other users in this segment, even if the system comes under a DDoS attack.

• Users in this segment will be able to generate and broadcast blocks to each other within
the usual timing constraints in this situation.

IP addresses will be hidden.

• Encrypted IP addresses will be published by 10 of the other members of the group of large
stakeholder core nodes.

Assumption

• Core node operators will not publish their IP addresses publicly.

• Encrypted IP addresses will be published by the 10 of the other members of the group of
large stakeholder core nodes.

• If a node operator’s IP address is compromised the operator will respond and change the
IP address of their node.

• The system will allow operators to change the address of their core nodes and communicate
with that new IP address within a reasonable period of time.

56

11.1.4 Network decentralisation

No hegemony As a user I want to be assured that IOHK and its business partners are not in
an especially privileged position in terms of trust, responsibility and necessity to the network so
that network hegemony is avoided.

• IOHK should be in the same position on the network as any other stakeholder with an
equivalent amount of stake.

• There is a more general requirement that no other actor could achieve hegemonic control
of the operation of the data diffusion layer.

11.2 TCP RPC response behavior

In Shelley we are using (pre-established) TCP/IP bearers, over which information exchanges
are multiplexed.

1. Given the interval between block diffusions we are assuming that the TCP/IP congestion
window will be reset to its IW (initial window)98.

2. There is a plethora of options for TCP/IP window scaling algorithms99, but changing
them on a particular machine requires superuser access, which violates the constraint in
Section 11.1.

3. As our exemplar environment here we are considering AWS linux deployments, specifi-
cally contemporary AWS Ubuntu images.

11.2.1 Time to transmit a block of given size across given latencies

The ∆Q|G value100 here is for the round trip time, the ∆Q|S is 8 × 10−8 s/o101 (the typical value
from tests), and the ∆Q per direction is taken to be 1/2 the round trip (reasonable in an AWS
environment, not so in an asymmetric networking case e.g. residential, SME)

Note that window size is always restricted in practice: the unrestricted window case is
presented here to capture the causality restriction within the slow-start TCP paradigm.

The tables show the time in seconds to achieve the bulk transfer (as per the outcome
description above) – their likely accuracy is ±1 RTT (left hand column) due to various vagaries
of how actual behaviour is context sensitive. Note that this does not model the initial request
time, but also note that the IW size can be 10, which reduces RTT count by one or so, so these
effects are cancelled out for longer transfers as the actual “bandwidth-delay product” dominates
those (i.e. once the TCP window is fully open). The red ‘danger’ colour shows block transfer
times that risk missing the targets set in Section 11.1.

The table 14 represents the “best credible case” (between AWS instances before kernel
parameters have to be changed) for a large window size that can be set from within a user
program.

98See Section 4.1 in https://tools.ietf.org/html/rfc5681 – the reset to initial conditions timer is based on the TCP
retransmit timer (see https://tools.ietf.org/html/rfc6298 Section 2). For Cardano deployments within AWS this has
a credible upper bound of one second (by observation and analysis), even between the most distant locations.

99See https://en.wikipedia.org/wiki/TCP congestion control – it should be noted that this work has as its goal
throughput fairness under saturation of a common resource with long lived data flows, whereas our data flows are
relatively short. Other flow control mechanisms that are not available in a TCP/IP environment, such as rate-based,
may be more suitable for our needs.

100The concept of ∆Q is explained in [TD20]. Here is a link to slides on applicability to block chain.
101s/o - seconds per octet

57

https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc6298
https://en.wikipedia.org/wiki/TCP_congestion_control
https://www.slideshare.net/pnsol-slides/q-and-blockchain-83943683

Table 13: Unrestricted Window Size

File size (ko)
∆Q|G (s) 2 5 10 20 50 100 200 500 1000 2000

0.002 0.001 0.001 0.003 0.005 0.007 0.010 0.012 0.017 0.025 0.042
0.005 0.003 0.003 0.008 0.013 0.018 0.023 0.028 0.035 0.044 0.061
0.010 0.005 0.005 0.015 0.025 0.035 0.046 0.056 0.068 0.080 0.097
0.020 0.010 0.010 0.030 0.050 0.070 0.091 0.111 0.133 0.155 0.180
0.050 0.025 0.025 0.075 0.125 0.175 0.226 0.276 0.328 0.380 0.435
0.100 0.050 0.050 0.150 0.250 0.350 0.451 0.551 0.653 0.755 0.860
0.150 0.075 0.075 0.225 0.375 0.525 0.676 0.826 0.978 1.130 1.285
0.200 0.100 0.100 0.300 0.500 0.700 0.901 1.101 1.303 1.505 1.710
0.250 0.125 0.125 0.375 0.625 0.875 1.126 1.376 1.628 1.880 2.135
0.300 0.150 0.150 0.450 0.750 1.050 1.351 1.651 1.953 2.255 2.560

Table 14: Large max window size (near default maximum)

File Size (ko)
∆Q|G (s) 2 5 10 20 50 100 200 500 1000 2000

0.002 0.001 0.001 0.003 0.005 0.007 0.010 0.012 0.017 0.025 0.042
0.005 0.003 0.003 0.008 0.013 0.018 0.023 0.028 0.035 0.044 0.062
0.010 0.005 0.005 0.015 0.025 0.035 0.046 0.056 0.068 0.087 0.119
0.020 0.010 0.010 0.030 0.050 0.070 0.091 0.111 0.133 0.172 0.234
0.050 0.025 0.025 0.075 0.125 0.175 0.226 0.276 0.328 0.427 0.579
0.100 0.050 0.050 0.150 0.250 0.350 0.451 0.551 0.653 0.852 1.154
0.150 0.075 0.075 0.225 0.375 0.525 0.676 0.826 0.978 1.277 1.729
0.200 0.100 0.100 0.300 0.500 0.700 0.901 1.101 1.303 1.702 2.304
0.250 0.125 0.125 0.375 0.625 0.875 1.126 1.376 1.628 2.127 2.879
0.300 0.150 0.150 0.450 0.750 1.050 1.351 1.651 1.953 2.552 3.454

58

Table 15: Medium max window size (near default)

File Size (ko)
∆Q|G,S (s) 2 5 10 20 50 100 200 500 1000 2000

0.002 0.001 0.001 0.003 0.005 0.007 0.010 0.012 0.017 0.025 0.042
0.005 0.003 0.003 0.008 0.013 0.018 0.023 0.028 0.039 0.055 0.090
0.010 0.005 0.005 0.015 0.025 0.035 0.046 0.056 0.076 0.107 0.178
0.020 0.010 0.010 0.030 0.050 0.070 0.091 0.111 0.151 0.212 0.353
0.050 0.025 0.025 0.075 0.125 0.175 0.226 0.276 0.376 0.527 0.878
0.100 0.050 0.050 0.150 0.250 0.350 0.451 0.551 0.751 1.052 1.753
0.150 0.075 0.075 0.225 0.375 0.525 0.676 0.826 1.126 1.577 2.628
0.200 0.100 0.100 0.300 0.500 0.700 0.901 1.101 1.501 2.102 3.503
0.250 0.125 0.125 0.375 0.625 0.875 1.126 1.376 1.876 2.627 4.378
0.300 0.150 0.150 0.450 0.750 1.050 1.351 1.651 2.251 3.152 5.253

Note a ∆Q|G,S of (300ms, 8 × 10−8 o/s) is not the absolute worst case – the worst we’ve
measured (in other work) is ∆Q|G,S of (188ms, 6.14 × 10−5 o/s) one-way between San Paulo and
Singapore. This would give a time-to-complete of 5.38s in the 2000 ko transfer case.

The table 15 represents the default case – i.e. no special action on the code and hence
acceptance of the contemporary window size default.

11.2.2 Examples of TCP/IP window opening between London and Sydney

The figure below shows the window size over a four-minute run:

The following figure shows the contemporaneous round trip (as reported from TCP):

59

Note that the outliers in round trip time are (most likely) relating to those packets that were at
the end of the round trip time / window closing – most ACKs would have been triggered by the
“two packet rule”; if an odd number of packets arrived just before a pause, its acknowledgement
would be dependent on the ACK timeout (˜40ms).

11.3 Model of network scaling

Table 16 below shows how the overall data diffusion time budget translates into a per-hop
budget as a function of the depth of the spanning tree.

Data diffusion time budget
Threshold Target Stretch

Max hops 20s 15s 10s

2 10.0s 7.5s 5.0s
3 6.6s 5.0s 3.3s
4 5.0s 3.75s 2.5s
5 4.0s 3.0s 2.0s

Table 16: Per-hop budget for data diffusion

These budgets should be compared with the time-to-complete for delivering a block in
Section 11.2.1.

Table 17 above shows the size of a (homogeneous) spanning tree as a function of depth
and valency. The shading represents increasing ‘success’ in reaching a large number of nodes.
However, as discussed in Section 5.6, a large depth is problematic because it reduces the per-hop
time budget, and a large valency is problematic because it increases the resources required by a
node. The figures in bold italics represent reasonable compromises.

11.4 Performance model of Ouroboros Praos

60

Valency

Depth 2 3 4 5 6
2 7 26 63 124 215
3 15 80 255 624 1295
4 31 242 1023 3124 7775
5 63 728 4095 15624 46655
6 127 2186 16383 78124 279935

Table 17: Size of spanning tree as a function of depth and node valency

Parameter Description Notes

N Number of active nodes Expected to be ˜1000
Ts Duration of a slot Expected to be ˜ 2s
f Active slot fraction 0 < f ≤ 1
∆ Maximum number of slots before a diffused

message is received
∆ ≥ 1

k Depth of chain for effective immutability

11.4.1 Distribution of leadership

From [BGKR17], the probability of stakeholder Ui with relative stake αi being chosen in any slot
is:

pi = ϕ f (αi)

= 1 − (1 − f)αi

We assume here that each of the N active nodes has an equal amount of stake102, αi =
1
N ,

and hence equal probability of being a leader in any particular slot. Then:

pi = 1 − (1 − f)
1
N

The probability that stakeholder Ui is not the leader is 1 − pi = (1 − f)
1
N , and so the

probability that no stakeholder is the leader (i.e. we have an empty slot) is103:

P(no leader) =
(
(1 − f)

1
N

)N

= 1 − f

(Hence the definition of f as the active slot fraction). If the probability of leadership was
directly proportional to stake it would be f

N for each node. The error relative to the true function
above is:

102The incentive system is designed to encourage a uniform distribution of stake between major nodes.
103Each node decides independently whether it is the leader, so we just multiply probabilities.

61

E f ,N = pi −
f
N

= 1 − f
N

− (1 − f)
1
N

≃ 1 − f
N

−
(

1 − f
N

+
(1

N − 1)
2N

f
2)

≃ f 2

2N

For reasonably large N and small f we could ignore this error term, and use the linear
approximation104. This would imply:

P(one leader) = f
(

1 − f
N

)N−1

In the large N limit105 this becomes:

P(one leader) = f e− f

Conversely, the probability of a run of m successive empty slots (since these are independent
trials) is:

PNL
m ≡ P(m slots no leader)

= P(no leader)m

= (1 − f)m

This gives the following table:

Active slots fraction f
m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 9.00E-01 8.00E-01 7.00E-01 6.00E-01 5.00E-01 4.00E-01 3.00E-01 2.00E-01 1.00E-01 0.00E+00
3 7.29E-01 5.12E-01 3.43E-01 2.16E-01 1.25E-01 6.40E-02 2.70E-02 8.00E-03 1.00E-03 0.00E+00

10 3.49E-01 1.07E-01 2.82E-02 6.05E-03 9.77E-04 1.05E-04 5.90E-06 1.02E-07 1.00E-10 0.00E+00
31 3.82E-02 9.90E-04 1.58E-05 1.33E-07 4.66E-10 4.61E-13 6.18E-17 2.15E-22 1.00E-31 0.00E+00

100 2.66E-05 2.04E-10 3.23E-16 6.53E-23 7.89E-31 1.61E-40 5.15E-53 1.27E-70 1.00E-100 0.00E+00

We can convert slots into a time interval by multiplying by Ts. Conversely, if we want to
know the probability that a certain time interval t will be leaderless, we can approximate this106

as:

PNL
t ≡ P(t seconds no leader)

= P(slot has no leader)
t

Ts

= (1 − f)
t

Ts

=
(
(1 − f)

1
Ts

)t

If we set a threshold Y (say 0.999) for the probability of having at least one leader in time t,
then t is bounded by:

104Which is simpler than the true Binomial distribution.
105The intention is to encourage ˜1000 stake pools, which is enough for the large N limit to be quite accurate.
106Ignoring the quantisation of m.

62

t ≥ Ts
log(1 − Y)
log(1 − f)

This is relevant for the consideration of timeouts that might be triggered by a leaderless
interval.

11.5 Comparison with general overlay networks

One approach to building a large-scale decentralized blockchain applications is to take existing
P2P protocols designed for other applications domains (notably P2P file sharing) and use them
as the distributed application infrastructure to build the blockchain itself. It is a temptingly fast
approach, but it comes with a number of security, scalability and performance hazards:

1. Protocols that were designed for a specific environment (e.g. efficient location of dis-
tributed content) are not well-suited to the requirements of a blockchain. For example, the
adoption of the Kademlia protocol in Ethereum facilitates low-resource Eclipse attacks on
the nodes of the blockchain [MHG15].

2. Protocols in a P2P framework are usually designed for a single environment, integrated
into their original application, and hard to repurpose to different requirements. This
exercise usually requires a redesign and re-implementation of the protocol from scratch,
since the protocol is not designed with adaptability in mind [Sli19]

3. P2P frameworks mostly focus on the construction and maintenance of the overlay structure
and on routing application requests / disseminating information. Other aspects that are
also important for the communication of application instances are usually not covered,
such as:

• Quality of service: ability to handle multiple classes of application traffic within the
overlay and differentially allocate loss and delay to them.

• Security: authentication, access control, confidentiality and message integrity, usually
achieved through protocols that are not part of the P2P framework such as TLS or
DTLS.

• Ability to operate over multiple IP networks (e.g. public Internet or private IP
networks) or other non-IP bearers (e.g. directly over Ethernet).

4. Scalability of the overlay is achieved ad-hoc. Some P2P frameworks introduce the concept
of “super-peers” [Mal15], but there is no formal means of creating hierarchies within the
overlay framework.

5. It is hard to reason about the correctness of a group of independently-designed protocols
working in conjunction. The properties of their joint operation in production environments
are going to be emergent and hence hard or impossible to control by design. The system is
always going to be suboptimal from an efficiency, security and performance standpoint
compared to a solution that designs the complete “communications middleware” in a
coherent and integrated fashion.

A piecemeal approach to addressing these communication challenges will not deliver a
robust and sustainable solution. In the same way that following a typical industry ‘low as-
surance’ approach to software development risks sinking effort into constantly debugging
poorly-specified code, continuing with a ‘business as usual’ approach to network issues risks
creating a complex and fragile solution that similarly consumes an ever-increasing fraction of the
available development and maintenance resources. Instead, we need a consistent framework in

63

which to define and describe issues and posit and refine solutions without piling up complexity
and technical debt.

Feature Standard P2P overlay framework

Authentication, access control, con-
fidentiality, integrity

Such functions are usually not part of the over-
lay framework, which relies on protocols such
as TLS and/or DTLS.

Routing and forwarding Most literature on P2P overlay frameworks is
about efficient location of distributed content,
leveraging DHT (Distributed Hash Table) tech-
nology to achieve consistent access this goal
[Mal15]

Support for multihoming Rely on limited definition of multihoming (load
balancing only) provided by IP-based technolo-
gies (e.g. multipath TCP or SCTP) or implement
specialized protocols

Support for node mobility (e.g.
wallet nodes)

Relies on home and foreign agents, tunnels, an-
chors, and specialized protocols to construct and
maintain the overlay connectivity graph, which
are use-case specific [MA13]

Efficient operation over heteroge-
neous physical media (e.g. fibre,
satellite, cellular, WiFi, etc.)

Would require development of a specialized
transport protocol within the overlay with sup-
port for congestion management. Intercon-
nection with other IP systems dependent on
widespread adoption / specialist gateways. Not
addressed by P2P overlay frameworks

Support for QoS (traffic differenti-
ation, routing)

Multiple techniques and algorithms available
in the literature [RS14], but these are hard (that
is, not achieved end-to-end in practice after ˜50
years since first proposed) to integrate into a
coherent solution

Extensibility / adaptability Protocols designed for a single purpose, need to
be redesigned for different environments [Sli19]

Efficiency of the system specifica-
tion and implementation

Each “control protocol” specifies its own encod-
ing format, information modelling and dissemi-
nation mechanisms.

Structured / generic approach to-
wards scalability

No, ad-hoc extensions (e.g. “super-peers”
[Mal15])

Support for non-IP bearers? No, designed to be overlaid on top of IP net-
works

Collaborative management of the
overlay

Hard to manage a group of independently de-
signed protocols working in conjunction: lack
of commonality and of a consistent theory of
operation

11.6 Time synchronisation constraints

Ouroboros Praos (in common with the original ‘classic’ version) assumes that the notion of a
time-slot is unambiguous, which requires participating nodes to have adequately synchronised
local clocks. The assumption is made in [BGKR17] that “any discrepancies between parties’ local
clocks are insignificant in comparison with the length of time represented by a slot”. Since in

64

reality there will be skew between the local clocks of participating nodes, this implicitly places a
lower limit on the slot time Ts, and potentially opens a new attack vector in which an adversary
manipulates the time reference of honest parties.

The current implementation approach is to rely on the NTP service maintained by OS
kernels. This has a number of performance and security constraints; security concerns are in
principle mitigated by the ‘secure’ variant of the protocol, but few servers support this due to
the computational cost of the cryptographic operations required. In terms of performance, there
is little reliable research, but the consensus is (from [Mil12]):

As a rule of thumb, the accuracy over the Internet is proportional to the propagation
delay. For a lightly loaded 100-Mb/s Ethernet, the accuracy is in the order of 100µs.
For an intercontinental Internet path, the accuracy can be up to several tens of
milliseconds.

On network paths with large asymmetric propagation delays, such as when one
direction is via satellite and the other via landline, the errors can reach 100 ms or
more. There is no way these errors can be avoided, unless there is prior knowledge
of the path characteristics.

Taking 100ms as the credible worst-case, if we interpret ‘insignificant’ as < 5%, this means
the minimum slot time Ts should not be less than 20 x 100ms = 2s, unless steps are taken
to mitigate sources of NTP inaccuracy. Further research is advisable into the consequences
of violating the clock-synchronisation assumption of [BGKR17], since Cardano is otherwise
potentially vulnerable to NTP-spoofing attacks.

11.6.1 Leap seconds

A further complication arises from the occasional insertion of ‘leap seconds’ into UTC. A
leap second is a one-second adjustment that is occasionally applied to civil time Coordinated
Universal Time (UTC) to keep it close to the mean solar time at Greenwich, in spite of the Earth’s
rotation slowdown and irregularities. UTC was introduced on January 1, 1972, initially with a 10
second lag behind International Atomic Time (TAI). Since that date, 27 leap seconds have been
inserted, the most recent on December 31, 2016 at 23:59:60 UTC, so in 2018, UTC lags behind TAI
by an offset of 37 seconds. When it occurs, a positive leap second is inserted between second
23:59:59 of a chosen UTC calendar date and second 00:00:00 of the following date. The definition
of UTC states that the last day of December and June are preferred, with the last day of March
or September as second preference, and the last day of any other month as third preference. All
leap seconds (as of 2017) have been scheduled for either June 30 or December 31.

Leap seconds do not pose a problem to Praos by themselves; however, the widespread
ambivalence towards them and varied/patchy implementation of them does. Not all clocks
implement leap seconds in the same manner as UTC [GvB14]: leap seconds in Unix time are
commonly implemented by repeating the last second of the day; Network Time Protocol freezes
time during the leap second; other schemes such as those deployed by Google and Amazon in
their public cloud infrastructure smear the lengths of seconds in the vicinity of a leap second. It
would thus be prudent to avoid generating blocks in the immediate vicinity of a leap second,
but this would require knowing when this is going to happen. Although the decision about
insertion of a leap second is made a long time in advance, most time distribution systems (SNTP,
IRIG-B, PTP) only announce leap seconds at most 12 hours in advance and sometimes only in
the last minute.

It seems that at worst one validly-generated block may be rejected by other nodes depending
on a temporary time difference, which represents a level of ‘adversarial’ behavior that Praos
can easily withstand. However, inconsistent implementations of leap second insertion make
the problem much worse. For example, the NTP packet includes a leap second flag, which

65

informs the user that a leap second is imminent. It has been reported [Mal16] that never, since
the monitoring began in 2008 and whether or not a leap second should be inserted, have all NTP
servers correctly set their flags on a potential leap second day. This is one reason many NTP
servers broadcast the wrong time for up to a day after a leap second insertion. Detailed studies
of the leap seconds of 2015 and 2016 show that, even for the Stratum-1 servers which anchor
the NTP server network, errors both in leap second flags and the server clocks themselves are
widespread, and can be severe [CV16].

Thus, even with all Cardano nodes using NTP, local variations in the propagation of a leap
second could result in persistent differences in local clock values over many slot times. This
clearly violates the assumption in the Praos paper that differences between local clocks are
insignificant; deeper analysis would be required to understand the consequences of this to
normal operation and what opportunities it represents for an adversary.

Another problem is that different time standards do not recognise the accumulation of leap
seconds. International Atomic Time (TAI) is exactly 37 seconds ahead of UTC (the 37 seconds
results from the initial difference of 10 seconds at the start of 1972, plus 27 leap seconds in UTC
since 1972). GPS time remains at a constant offset with TAI (TAI − GPS = 19 seconds), and
hence at a constant offset with UTC, although this offset changes whenever a leap-second is
introduced. If a Cardano node happened to be synchronised with GPS time, say, and failed to
account for the offset to UTC, it would be unable to participate properly in the protocol.

11.7 Ouroboros Network Components

The Ouroboros Network implementation consists of the following Haskell packages:

1. typed-protocols – a standalone session type framework, which allows communication
protocols to be expressed and enforced;

2. typed-protocols-cbor – a small extension to provide codec support for the CBOR format;

3. network-mux – a standalone multiplexing library;

4. ouroboros-network-framework – a library which makes low level choice for ouroboros-
network and implements low level network components / primitives, e.g. connection
manager, server.

5. ouroboros-network – a library which implements the consensus application-level pro-
tocols to support node-to-node as well as node-to-client communication (each consists of
a bundle of mini-protocols expressed with typed-protocols package), and all the required
architecture to run them.

For the larger picture how all the network components fit together with the consensus
components in a full node, see the diagram in Section 5.2.

All the node-to-node mini-protocols (chain-sync, block-fetch and tx-submission protocols) are
multiplexed over a single bearer (e.g. TCP socket) using a network-mux package. For a node-to-
node (similarly for node-to-client protocol) the networking components are schematically aligned
in the following stack:

The bearer is an abstraction which allows reading / writing bytes from the underlying
network (TCP socket, Unix socket, Windows named pipes, etc.). Protocols are expressed using
the session type framework.

11.7.1 Typed Protocols

Typed protocols is a standalone library which implements a form of session types. It allows
expression of both a server and a client which stay dual to each other (i.e. being in the same state,

66

and only one side having the agency to send a message) throughout the evolution of the protocol.
In particular this also means that one cannot have a deadlock (when two nodes are waiting for
the next message), or being in different states (which would result in receiving an unexpected
message). This library is novel in that it allows the addition of pipelining, which gives good
performance through latency hiding. This library gives us a way to write protocols in which
correctness is proven by the compiler and still can provide necessary performance characteristics..
Session types have been a main research topic at some of the best academic centers, and we
received interest from well-known scientists in the field (prof. Philip Wadler) as well as from the
Haskell community during various events where the framework was presented107.

The only prerequisite for using typed-protocols is to use bearers that guarantee order of
delivery. Currently, we target TCP, but there are possible extensions of UDP that could sat-
isfy this constraint, using other low level network protocols is also plausible. Within a local
computational context we can use named pipes as the bearers, which removes a lot of complexity.

11.7.2 Network-Mux

network-mux is a general multiplexing library which allows us to run multiple protocols over a
single bearer. The multiplexer avoids head-of-line blocking, guarantees fairness and is designed
to use minimal resources.

On the egress end (outbound messages) mini-protocols are competing for a common resource.
The important part of the technical design is to impose fair share of the resource. In this context
we define (and guarantee) fairness defined as:

• no starvation;

• when presented with equal demand (from a selection of mini protocols) deliver equal
service.

network-mux is designed to support full-duplex bearer capabilities. This means it can run
initiator / responder (client / server) parts of a mini-protocol at both ends of the connection
simultaneously.

This component is independent of typed-protocols (or any protocol library), and thus can be
used for many different purposes.

Data Flow in Network-Mux
107The framework was presented by Duncan Coutts at Haskell eXchange 2019 , and Marcin Szamotulski at Monadic

Party 2019.

67

https://skillsmatter.com/skillscasts/14633-45-minute-talk-by-duncan-coutts
https://www.youtube.com/watch?v=j8gza2L61nM
https://www.youtube.com/watch?v=j8gza2L61nM

Incoming Data path (Ingress path)

Outgoing Data Path (Egress Path)

11.7.3 Ouroboros-Network

The ouroboros-network library implements mini-protocols for node-to-node and node-to-client com-
munication using the typed-protocols package; it provides the means to run them over TCP
sockets, unix sockets, Windows named pipes and can be easily extended to unix pipes. It also
exports an API for writing nodes and clients.

A node-to-node protocol consists of:

• chain-sync mini-protocol – a protocol which allows a node to reconstruct a chain of an
upstream node;

• block-fetch mini-protocol – a protocol which allows a node to download block bodies from
various peers;

• tx-submission mini-protocol – a protocol which allows submission of transactions.

A client is a standalone local application which communicates with a node using a unix-
socket (or named-pipe on Windows). This avoids the design flaw in the Byron era, which is using
tcp-sockets and thus needs to use tls. This has been a source of frustration for many end-users).

68

Example local clients are: wallets, explorers, command line tools for various third-parties (e.g.
exchanges).

The node-to-client protocol consists of:

• chain-sync mini-protocol

• local-tx-submission mini-protocol

• local-state-query mini-protocol

From the networking perspective it is not important which flavour of Ouroboros protocol
is being used, and all the protocols reflect that (the current Haskell implementation is using
polymorphism to achieve this goal). Both node-to-client and node-to-node protocols are using the
same chain-sync protocol, but the difference is that for the former we are only sending headers
through the network, while the latter is sending whole blocks.

Block Fetch Component Block fetch logic is the component responsible for downloading
blocks from connected peers. It runs the client and server sides of the block fetch protocol, block
fetch state per peer and a block fetch logic component which orchestrates all the downloads. The
block fetch logic makes decisions from whom to download a block (as blocks may be available
from various peers).

Handshake Mini Protocol On all incoming connections, before starting the multiplexer we
run a handshake protocol. It allows agreement on protocol parameters. It is designed so that the
whole mini-protocol conversation fits into a single round trip (at the TCP level).

Currently, in version ‘V1‘ we only support network magic, which supports distinguishing
various networks, e.g. stage-net, test-net, main-net. The protocol is extensible in the sense that
any future version can support its own set of protocol parameters.

Other components of Ouroboros-Network package We implemented a peer-to-peer governor
which role is to drive decisions about promotions, demotions and peer sharing. It is there
to provide the rest of the system with possible peers to communicate with and govern their
state (hot peer / worm peer / cold peer). We are implementing a connection manager which
will manage active connections and threads and will provide low level primitives which are
to be used by the peer-to-peer governor. The peer-to-peer governor is flexible enough to
handle various deployment scenarios as well as internal usage - we plan to use it not only in
a decentralised setting but also to subscribe clients (wallets, explorers) over a local bearer to a
node.

Anchored Fragments This is a small part of the Ouroboros-Network package which imple-
ments an efficient chain data structure: ‘AnchoredFragment‘. It is hidden at the bottom of the
stack since it is useful in the ‘BlockFetch‘ component and in various Ouroboros-Network tests.

The implementation represents the sequence of headers using a finger tree data structure
instantiated for block headers to enable efficient O(log n) operations based on slot numbers and
block numbers, in addition to the normal efficient sequence operations.

11.7.4 Simulator environment IOSim

Source Lines of Code:

69

http://www.staff.city.ac.uk/~ross/papers/FingerTree.html

Component sloc sloc of tests

io-classes 1148 -
io-sim 822 601

We wrote a simulation environment for the IO monad (which is called IOSim or sim-io). This
is similar to the system that was used to test the Bitcoin backbone protocol is [MJ15]. This, unlike
the other components, is very Haskell-specific, and thus its description below will use language
which might be more familiar for Haskell developers. It is a pure monad (in the same sense as
the Identity functor or Free monad from the free package). The simulator monad supports the
following interfaces:

• software transactional memory STM

• concurrency in the form of low level fork interface and the async package

• ST monad interface

• synchronous and asynchronous exception handling

• timers API

• monotonic time

The interface is presented as a set of type classes; its instances are written with the following
principles:

• the IO instances are as close to the base, stm and async packages as possible (we have very
few places where we slightly diverge).

• the Sim instances are faithful to IO instances.

This allows us to write computations that can be interpreted both in IO and the simulator
monad IOSim.

Currently IOSim provides a single scheduling policy, but it is possible to extend it, which
would improve assurance for tests expressed using IOSim monad.

The time in IOSim is simulated, which allows running tests that otherwise would take a
very long time to complete. Not surprising this was very useful for testing networking code,
but also turned out to be very useful testing the ouroboros-consensus package maintained by the
consensus team.

The simulator environment allows collection of a trace of a computation (similar to Haskell’s
eventlog). This is valuable for constructing complex property tests of some of the components
and it has proven useful in finding low-level bugs that would be extremely difficult to diagnose
in a running system.

The stm interface is more general than that of the stm package. It defines strict and lazy
versions of stm mutable variables, what allows tracing of memory leaks.

The hierarchy of classes is slightly different than that of standard Haskell packages, and
it was designed to help in the reviewing process (both during development, and for external
evaluation). Standard Haskell instances are also exported.

70

11.7.5 Testing Strategies

All the protocols are tested on several different levels:

• the typed-protocol level, the tests prove that the implementation meets the specification.
The type-protocol package turns test errors into type errors. These tests are carried for both
non-pipelined and pipelined clients.

• The wrapper API for each protocol is tested. This is an un-typed version of the previous
tests. It assures that the client and server types are dual to each other. These tests are
carried for both non-pipelined and pipelined clients.

• Test the protocols using example clients and servers over:

– a channel (using STM’s TMVar’s)

– using pipes

All the tests are done in both the IO monad and the IOSim monad.
Beside protocol tests we also maintain codecs for each protocol and a testing architecture for

them. The typed protocols package exports properties which allows us to:

• test that decoding is the right inverse to encoding (e.g. decoding an encoded message
brings back the original message)

• test incremental decoders, which allows guarding against boundary errors.

Some of the tests rely on the IOSim monad which has extensive tracing support. This allows
checking invariants of the running component. This also permits us to see the evolution of state
maintained by the component, and trace events that are happening in various testing scenarios.
We use this technique in the BlockFetch, peer-to-peer governor as well as some other components.
In all cases it allowed us to catch subtle bugs early in the development process.

References

[BGK+19] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, , and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. 2019.

[BGKR17] David Bernado, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. 2017.

[CBT+19] Nakul Chawla, Hans Walter Behrens, Darren Tapp, Dragan Boscovic, and K. Selcuk
Candan. Velocity: Scalability improvements in block propagation through rateless
erasure coding. 2019.

[CV16] Yi Cao and Darryl Veitch. Network timing, weathering the 2016 leap second. IEEE
Infocom, 2016.

[Day08] John Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice Hall,
2008.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. 2013.

[GvB14] K. Gross and R. van Brandenburg. RFC7164: RTP and leap seconds, 2014.

71

[Hon93] Kohei Honda. Types for dyadic interaction. CONCUR’93, 1993.

[HVK98] K. Honda, V.T. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. Programming Languages and
Systems. ESOP, 1998.

[MA13] A. Mohammadi and B. Akbari. Design a peer to peer overlay protocol for mobility
management of mobile nodes using bluetooth media. International Conference on
Computing, Communications and Networking Technologies, 2013.

[Mal15] A. Malatras. State of the art survey on P2P overlay networks in pervasive computing
environments. Elsevier Journal of Network and Computer Applications, 2015.

[Mal16] David Malone. The leap second behaviour of NTP servers, 2016.

[Mar13] Simon Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly Media, Inc.,
2013.

[MHG15] Y. Marcus, E. Heilman, and S. Goldberg. Low-resource eclipse attacks on ethereum’s
peer-to peer network. 24th USENIX Security Symposium, 2015.

[MHG18] Yuval Marcus, Ethan Heilman, , and Sharon Goldberg. Low-resource eclipse attacks
on ethereum’s peer-to-peer network, 2018.

[Mil12] David L. Mills. Executive summary: Computer network time synchronization, 2012.

[MJ15] Andrew Miller and Rob Jansen. Shadow-bitcoin: Scalable simulation via direct exe-
cution of multi-threaded applications. 8th Workshop on Cyber Security Experimentation
and Test, 2015.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. Peer-to-Peer Systems, 2002.

[MV11] D. Mostrous and V.T. Vasconcelos. Session typing for a featherweight erlang. Coordi-
nation Models and Languages. COORDINATION 2011, 2011.

[Neu19] Till Neudecker. Characterization of the bitcoin peer-to-peer network (2015-2018),
2019. associated data https://dsn.tm.kit.edu/bitcoin/#propagation, sampled
only in Germany.

[RS14] K. Ramalakshmi and P. K. Sasikumaar. Study on security and quality of service im-
plementations in P2P overlay network for efficient content distribution. International
Journal of Research in Engineering and Technology, 2014.

[Sli19] Matthew Slippe. A study of libp2p and ETH2, 2019.

[SvVV12] Vinay Setty, Maarten van Steen, Roman Vitenberg, and Spyros Voulgaris. Poldercast:
Fast, robust, and scalable architecture for P2P topic-based pub/sub. 2012.

[TD20] Peter Thompson and Neil Davies. Towards a rina-based architecture for performance
management of large-scale distributed systems. Computers, 2020.

[THK94] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing
system. PARLE’94 Parallel Architectures and Languages Europe, 1994.

[VFV17] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dandelion:
Redesigning the bitcoin network for anonymity. SIGMETRICS’17, 2017.

[Wat99] Duncan J Watts. Small Worlds: The Dynamics of Networks between Order and Randomness.
Princeton University Press, 1999.

72

https://dsn.tm.kit.edu/bitcoin/#propagation

	Revision History
	Executive Summary
	Technical Summary and Motivation for the New Design
	Introduction
	Structure of the document

	Overview
	Consensus constraints and design decisions
	Interleaving transmission and validation
	Block/body splitting
	Stateful chain-following
	Storage subsystem

	Consensus components
	Network constraints and design decisions
	Stateful versus stateless protocols
	Concurrency
	Bearer and multiplexing
	Performance
	Binary formats

	Network libraries and components
	Related work (data diffusion)
	PolderCast
	Other blockchain systems
	Other related work

	Decentralisation constraints
	Decentralisation design
	Related work (decentralisation)

	Distributed consensus on a global scale
	Characteristics of Cardano
	Fundamental requirements of Cardano data diffusion
	Timeliness constraint
	Comparison with previous network implementations
	Stateful connections

	High-level threat model
	Adversarial peers
	Eclipse attacks
	Resource exhaustion attacks
	Tier-1 actors
	Bearer-level attacks

	Analysis of alternative approaches
	Dandelion
	Kademlia
	PolderCast
	Summary of comparison

	Operational environment and constraints
	Data diffusion targets
	Fundamental tradeoffs
	Adversarial power and knowledge
	Stake distribution
	Graceful degradation
	Backward compatibility and extensibility

	Key design decisions
	Stateful implementation
	Peer-with-peer
	Validated forwarding
	Demand-driven protocols

	Network architecture
	Development approach
	Session Type Framework

	Point-to-point bearers
	Demand-driven spanning tree
	Protocol framework
	Compositionality
	Structured information exchanges
	Protocol polymorphism

	Performance assessment and optimisation
	Summary response to threats
	Bootstrap

	Outstanding and unresolved issues
	Cold/black start scenarios
	Resources and decentralisation

	Annexes
	Business requirements
	Network connectivity
	Network performance
	Distributed System Resilience and Security
	Network decentralisation

	TCP RPC response behavior
	Time to transmit a block of given size across given latencies
	Examples of TCP/IP window opening between London and Sydney

	Model of network scaling
	Performance model of Ouroboros Praos
	Distribution of leadership

	Comparison with general overlay networks
	Time synchronisation constraints
	Leap seconds

	Ouroboros Network Components
	Typed Protocols
	Network-Mux
	Ouroboros-Network
	Simulator environment IOSim
	Testing Strategies

	References

