
The Shelley Networking Protocol

Duncan Coutts
duncan@well-typed.com

duncan.coutts@iohk.io

Neil Davies
neil.davies@pnsol.com

neil.davies@iohk.io

Karl Knutsson
karl.knutsson@iohk.io

Marc Fontaine
marc.fontaine@iohk.io

Armando Santos
armando@well-typed.com

Marcin Szamotulski
marcin.szamotulski@iohk.io

Alex Vieth
alex@well-typed.com

Version 1.3.0, 24th January 2024

Abstract

This document provides technical specification of the implementation of the ouroboros-network component of
cardano-node. It provides specification of all mini-protocols as well multiplexing and low level wire encoding. It
provides necessary information about both node-to-node and node-to-client protocols.

The primary audience for this document are engineers wishing to build clients interacting with a node via
node-to-client or node-to-node protocols or independent implementations of a node. Although the original imple-
mentation of ouroboros-network is done Haskell, this specification is made language agnostic. We may
provide some implementation details which are Haskell specific.

Contents

1 System Architecture 3
1.1 Protocols and node design . 3
1.2 Congestion Control . 3
1.3 Real-time Constraints and Coordinated Universal Time . 5

2 Multiplexing mini-protocols 6
2.1 The Multiplexing Layer . 6

2.1.1 Wire Format . 7
2.1.2 Fairness and Flow-Control in the Multiplexer . 7
2.1.3 Flow-control and Buffering in the Demultiplexer . 7

2.2 Node-to-node and node-to-client protocol numbers . 7

3 Mini Protocols 9
3.1 Mini Protocols and Protocol Families . 9
3.2 Protocols as State Machines . 9
3.3 Overview of all implemented Mini Protocols . 11
3.4 CBOR and CDDL . 11
3.5 Dummy Protocols . 12

3.5.1 Ping-Pong mini-protocol . 12
3.5.2 Request-Response mini-protocol . 12

3.6 Handshake mini-protocol . 14
3.6.1 Description . 14
3.6.2 State machine . 14
3.6.3 Client and Server Implementation . 15
3.6.4 Handhsake version 11 and greater . 16
3.6.5 CDDL encoding specification (< 11) . 16
3.6.6 CDDL encoding specification (11 to 12) . 18
3.6.7 CDDL encoding specification (≥ 13) . 18

3.7 Chain-Sync mini-protocol . 19
3.7.1 Description . 19
3.7.2 State Machine . 19
3.7.3 Implementation of the Chain Producer . 20
3.7.4 Implementation of the Chain Consumer . 23
3.7.5 CDDL encoding specification . 23

3.8 Block-Fetch mini-protocol . 24
3.8.1 Description . 24
3.8.2 State machine . 24
3.8.3 CDDL encoding specification . 24

3.9 Tx-Submission mini-protocol . 25
3.9.1 Version 1 . 25
3.9.2 Version 2 . 25
3.9.3 Client and Server Implementation . 27

3.10 Keep Alive Mini Protocol . 28

1

3.10.1 Description . 28
3.10.2 State machine . 28
3.10.3 CDDL encoding specification . 29

3.11 Local Tx-Submission mini-protocol . 29
3.11.1 Description . 29
3.11.2 State machine . 29

3.12 Local State Query mini-protocol . 30
3.12.1 Description . 30
3.12.2 State machine . 30
3.12.3 CDDL encoding specification . 31

3.13 Peer Sharing mini-protocol . 31
3.13.1 Description . 32
3.13.2 State machine . 32
3.13.3 Client Implementation Details . 32
3.13.4 Server Implementation Details . 33
3.13.5 CDDL encoding specification (11 to 12) . 33
3.13.6 CDDL encoding specification (≥ 13) . 33

3.14 Pipelining of Mini Protocols . 34
3.15 Node-to-node protocol . 34
3.16 Node-to-client protocol . 34

4 Connection Manager State Machine Specification 36
4.1 Introduction . 36
4.2 Components . 36
4.3 Connection Manager . 37

4.3.1 Overview . 37
4.3.2 Types . 40
4.3.3 Connection states . 41
4.3.4 Transitions . 44
4.3.5 Protocol errors . 50
4.3.6 Closing connection . 50
4.3.7 Outbound connection . 51
4.3.8 Inbound connection . 52

4.4 Server . 59
4.5 Inbound Protocol Governor . 61

4.5.1 States . 61
4.5.2 Transitions . 63

A Common CDDL definitions 65

Version history
Version 1.0.0 Nov 2019, State machines and wire format for Ouroboros-Network-1.0.0.

Version 1.1.0 Apr 2021, Connection Manager for Ouroboros-Network-Framework.

Version 1.2.0 Apr 2021, tx-submission version 2, local-state-query, keep-alive mini-protocols

Version 1.3.0 Jul 2021, Review of the multiplexer documentation

2

Chapter 1

System Architecture

1.1 Protocols and node design
There are two protocols which support different sets of mini-protocols:

• node-to-node protocol for communication between different nodes usually run by different entities across the
globe. It consists of chain-sync, block-fetch, tx-submission and keep-alive mini-protocols.

• node-to-client protocol for intra-process communication, which allows to build applications that need access
to the blockchain, ledger, e.g. a wallet, an explorer, etc. It consists of chain-sync, local-tx-submission and
local-state-query mini-protocols.

Chain-sync mini-protocol (the node-to-node version) is used to replicate a remote chain of headers; block-fetch
mini-protocol to download blocks and tx-submission to disseminate transactions across the network.

Figure 1.1 illustrates design of a node. Circles represents threads that run one of the mini-protocols. Each
mini-protocols communicate with a remote node over the network. Threads communicate by means of a shared mutable
variables, which are represented by boxes in Figure 1.1. We heavily use Software transactional memory (STM), which
is a mechanism for safe and lock-free concurrent access to mutable state (see Harris and Peyton Jones (2006)).

The ouroboros-network supports multiplexing mini-protocols, which allows to run node-to-node or node-to-client
protocol on a single bearer, e.g. a TCP connection, other bearers are also supported. This means that chain-sync,
block-fetch and tx-submission mini-protocols will share a single TCP connection. The multiplexer, its framing is
described in Chapter 2.

1.2 Congestion Control
A central design goal of the system is robust operation at high workloads. For example, it is a normal working condition
of the networking design that transactions arrive at a higher rate than the number that can be included in blockchain. An
increase of the rate at which transactions are submitted must not cause a decrease of the block chain quality.

Point-to-point TCP bearers do not deal well with overloading. A TCP connection has a certain maximal bandwidth,
i.e. a certain maximum load that it can handle relatively reliably under normal conditions. If the connection is ever
overloaded, the performance characteristics will degrade rapidly unless the load presented to the TCP connection is
appropriately managed.

At the same time, the node itself has a limit on the rate at which it can process data. In particular, a node may have
to share its processing power with other processes that run on the same machine/operation system instance, which
means that a node may get slowed down for some reason, and the system may get in a situation where there is more
data available from the network than the node can process. The design must operate appropriately in this situation and
recover from transient conditions. In any condition, a node must not exceed its memory limits, that is there must be
defined limits, breaches of which being treated like protocol violations.

Of course it makes no sense if the system design is robust, but so defensive that it fails to meet performance goals.
An example would be a protocol that never transmits a message unless it has received an explicit ACK for the previous

3

https://en.wikipedia.org/wiki/Software_transactional_memory

Mempool

Chain DB

Ledger state

Chain state

Candidate
chains

(headers)

Chain sync
protocol

(client side)

Block
download

logic

Block fetch
protocol

(server side)

Chain sync
protocol

(server side)

Block fetch
protocol

(client side)

Tx submission
protocol

(client side)

Block
creator

Mempool
syncer

Tx submission
protocol

(server side)

Shared state
(STM in-memory only)

Thread (internal)Shared state (hybrid
of memory & persistent)

Thread (protocol)

Figure 1.1: Cardano Node

4

message. This approach might avoid overloading the network, but would waste most of the potential bandwidth. To
avoid such performance problems, our implementation is heavily using protocol pipelining.

1.3 Real-time Constraints and Coordinated Universal Time
Ouroboros models the passage of physical time as an infinite sequence of time slots, i.e. contiguous, equal-length
intervals of time, and assigns slot leaders (nodes that are eligible to create a new block) to those time slots. At the
beginning of a time slot, the slot leader selects the block chain and transactions that are the basis for the new block, then
it creates the new block and sends the new block to its peers. When the new block reaches the next block leader before
the beginning of next time slot, the next block leader can extend the block chain upon this block (if the block did not
arrive on time the next leader will create a new block anyway).

There are some trade-offs when choosing the slot time that is used for the protocol but basically the slot length
should be long enough such that a new block has a good chance to reach the next slot leader in time. It is assumed that
the clock skews between the local clocks of the nodes is small with respect to the slot length.

However, no matter how accurate the local clocks of the nodes are with respect to the time slots the effects of a
possible clock skew must still be carefully considered. For example, when a node time-stamps incoming blocks with
its local clock time, it may encounter blocks that are created in the future with respect to the local clock of the node.
The node must then decide whether this is because of a clock skew or whether the node considers this as adversarial
behavior of another node.

5

Chapter 2

Multiplexing mini-protocols

2.1 The Multiplexing Layer
Multiplexing is used to run several mini protocols in parallel over a bidirectional bearer (for example a TCP connection).
Figure 2.1 illustrates multiplexing of three mini-protocols over a single duplex bearer. The multiplexer guarantees a
fixed pairing of mini-protocol instances, each mini-protocol only communicates with its counter part on the remote end.

Figure 2.1: Data flow through the multiplexer and de-multiplexer

The multiplexer is agnostic to the bearer it runs over, however it assumes that the bearer guarantees an ordered
and reliable transport layer1 and it requires the bearer to be full-duplex to allow simultaneous reads and writes2. The
multiplexer is agnostic to the serialisation used by a mini-protocol (which we specify in section 3). Multiplexer specifies
its own framing / binary serialisation format, which is described in section 2.1.1. The multiplexer allows to use each
mini-protocol in either direction.

The multiplexer exposes interface which hides all the multiplexer details, a single mini-protocol communication can
be written as if it would only communicate with its instance on the remote end. When the multiplexer is instructed to
send bytes of some mini-protocol, it splits the data into segments, adds a segment header, encodes it and transmits the
segments over the bearer. When reading data from the network, segment’s headers are used reassemble mini-protocol
byte streams.

1Slightly more relaxed property is required: in order delivery of multiplexer segments which belong to the same mini-protocol.
2Note that one can always pair two unidirectional bearers to form a duplex bearer, we use this to define a duplex bearer out of unix pipes, or queues

(for intra-process communication only).

6

https://www.wikiwand.com/en/Duplex_(telecommunications)#/Full-duplex

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Transmission Time

M Mini Protocol ID Payload-length n

Payload of n Bytes

Table 2.1: Multiplexer’s segment binary encoding, see Network.Mux.Codec.

2.1.1 Wire Format
Table 2.1 shows the layout of the data segments of the multiplexing protocol in big-endian bit order. The segment header
contains the following data:

Transmission Time The transmission time is a time stamp based the lower 32 bits of the sender’s monotonic clock
with a resolution of one microsecond.

Mini Protocol ID The unique ID of the mini protocol as in tables 2.2 and 2.3.

Payload Length The payload length is the size of the segment payload in Bytes. The maximum payload length that is
supported by the multiplexing wire format is 216 − 1. Note, that an instance of the protocol can choose a smaller
limit for the size of segments it transmits.

Mode The single bit M (the mode) is used to distinct the dual instances of a mini protocol. The mode is set to 0 in
segments from the initiator, i.e. the side that initially has agency and 1 in segments from the responder.

2.1.2 Fairness and Flow-Control in the Multiplexer
The Shelley network protocol requires that the multiplexer uses a fair scheduling of the mini protocols. Haskell
implementation of multiplexer uses a round-robin-schedule of the mini protocols to choose the next data segment to
transmit. If a mini protocol does not have new data available when it is scheduled, it is skipped. A mini-protocol can
transmit at most one segment of data every time it is scheduled and it will only be rescheduled immediately if no other
mini protocol is ready to send data.

From the point of view of the mini protocols, there is a one-message buffer between the egress of the mini protocol
and the ingress of the multiplexer. The mini protocol will block when it sends a message and the buffer is full.

A concrete implementation of a multiplexer may use a variety of data structures and heuristics to yield the overall
best efficiency. For example, although the multiplexing protocol itself is agnostic to the underlying structure of the data,
the multiplexer may try to avoid splitting small mini protocol messages into two segments. The multiplexer may also try
to merge multiple messages from one mini protocol into a single segment. Note that, the messages within a segment
must all belong to the same mini-protocol.

2.1.3 Flow-control and Buffering in the Demultiplexer
The demultiplexer eagerly reads data from the bearer. There is a fixed size buffer between the egress of the demultiplexer
and the ingress of the mini protocols. Each mini protocol implements its own mechanism for flow control which
guarantees that this buffer never overflows (see Section 3.14.). If the demultiplexer detects an overflow of the buffer, it
means that the peer violated the protocol and the MUX/DEMUX layer shuts down the connection to the peer.
Specify ingress buffer sizes for each mini-protocol

2.2 Node-to-node and node-to-client protocol numbers
haddock documentation: Network.Mux.Types
haddock documentation: Ouroboros.Network.NodeToNode
haddock documentation: Ouroboros.Network.NodeToClient

7

https://ouroboros-network.cardano.intersectmbo.org/network-mux/Network-Mux-Codec
https://ouroboros-network.cardano.intersectmbo.org/network-mux/Network-Mux-Types
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToNode
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToClient

Ouroboros network defines two protocols: node-to-node and node-to-client protocols. Node-to-node is used for inter
node communication across the Internet, while node-to-client is an inter process communication, used by clients, e.g. a
wallet, db-sync, etc. Each of them consists of a bundle of mini-protocols (see chapter 3). The protocol numbers of both
protocols are specified in tables 2.2 and 2.3.

mini-protocol mini-protocol number
Handshake 0
Chain-Sync (instantiated to headers) 2
Block-Fetch 3
TxSubmission 4
Keep-alive 8

Table 2.2: Node-to-node protocol numbers

mini-protocol mini-protocol number
Handshake 0
Chain-Sync (instantiated to blocks) 5
Local TxSubmission 6
Local State Query 7

Table 2.3: Node-to-client protocol numbers

8

Chapter 3

Mini Protocols

3.1 Mini Protocols and Protocol Families
A mini protocol is a well defined and modular building block of the network protocol. Structuring the protocol around
mini protocols helps to manage the overall complexity of the design and adds useful flexibility. The design turns into a
family of mini protocols that can be specialised to particular requirements by choosing a particular set of mini protocols.

The mini protocols in this section describe both the initiator and responder of a communication. The initiator is the
dual of the responder and vice versa. (The terms client/server and consumer/producer are also used sometimes.) At any
time a node will typically run many instances of mini protocols, including many instances of the same mini protocol.
Each mini protocol instance of the node communicates with the dual instance of exactly one peer.

The set of mini protocols that run on a connection between two participants of the system depends on the role of the
participants, i.e. whether the node acts as a full node or just a block chain consumer, for example a wallet.

3.2 Protocols as State Machines
The implementation of the mini protocols uses a generic framework for state machines. This framework uses
correct-by-construction techniques to guarantee several properties of the protocol and the implementation. In particular,
it guarantees that there are no deadlocks. At any time, one side has agency (is expected to transmit the next message) and
the other side is awaiting for the message (or both sides agree that the protocol has terminated). If either side receives a
message that is not expected according to the protocol the communication is aborted.

For each mini protocol that is based on this underlying framework the description provides the following pieces of
information:

• An informal description of the protocol.

• States of the state machine.

• The messages that are exchanged.

• A transition graph of the global view of the state machine.

• The client implementation of the protocol.

• The server implementation of the protocol.

State Machine Each mini protocol is described as a state machine. This document uses a simple diagram representations
for state machines, and also includes corresponding transition tables. Descriptions of state machines in this section
are directly derived from specifications of mini protocols using the state machine framework.

The state machine framework that is used to specify the protocol can be instantiated with different implementations
that work at different levels of abstraction (for example implementations used for simulation, implementations
that run over virtual connections and implementations that actually transmit messages over the real network).

9

States States are abstract: they are not a value of some variables in a node, but rather describe the state of the two-party
communication as whole, e.g. that a client is responsible for sending a particular type of message and the server is
awaiting on it. This, in particular, means that if the state machine is in a given state, both client and server are in
this state. An additional piece of information that differentiates the roles of peers in a given state is agency, which
describes which side is responsible for sending the next message.

In the state machine framework, abstract states of a state machine are modelled as promoted types, so they do not
correspond to any particular value hold by one of the peers.

The document presents this abstract view of mini protocols and the state machines where the client and server are
always in identical states, which also means that client and server simultaneously transit to new states. For this
description network delays are not important.

An interpretation, which is closer to the real-world implementation but less concise, is that there are independent
client and server states and that transitions on either side happen independently when a message is sent or received.

Messages Messages exchanged by peers form edges of a state machine diagram, in other words they are transitions
between states. They are elements from the set

{(label, data) | label ∈ Labels, data ∈ Data}

Protocols use a small set of Labels typically |Labels| ≤ 10. The state machine framework requires that messages
can be serialised, transferred over the network and de-serialised by the receiver.

Agency A node has agency if it is expected to send the next message. In every state (except the StDone-state) either
the client or server has agency. In the StDone-state the protocol has terminated and neither side is expected to
send any more messages.

State machine diagrams States are drawn as circles in state machine diagrams. States with agency at the client are
drawn in green, states with agency at the server in blue and the StDone-state in black. By construction, the
system is always in exactly one state, i.e. the client’s state is always the same state as server’s, and the colour
indicates who is the agent. It is also important to understand that the arrows in the state transition diagram denote
state transitions and not the direction of the message that is being transmitted. For the agent of the particular state
the arrow means: “send a message to the other peer and move to the next state”. For a non-agent an arrow in the
diagram can be interpreted as: “receive an incoming message and move to the next state”. This may be confusing
because the arrows are labelled with the messages and many arrows go from a green state (client has the agency)
to a blue state (server has the agency) or vice versa.

A B
Message

A is green, i.e in state A the client has agency. Therefore the client sends a message to the server and both client
and server transition to state B. As B is blue the agency also changes from client to server.

C D
Message

C is blue, i.e in state C the server has agency. Therefore the server sends a message to the client and both client
and server transition to state D. As D is also blue the agency remains at the server.

Client and server implementation The state machine describes which messages are sent and received and in which
order. This is the external view of the protocol that every compatible implementation MUST follow. In addition to
the external view of the protocol, this part of the specification describes how the client and server actually process
the transmitted messages, i.e. how the client and server update their internal mutable state upon the exchange of
messages.

Strictly speaking, the representation of the node-local mutable state and the updates to the node-local state are
implementation details that are not part of the communication protocol between the nodes, and will depend on
an application that is built on top of the network service (wallet, core node, explorer, etc.). The corresponding
sections were added to clarify the mode of operation of the mini protocols.

10

3.3 Overview of all implemented Mini Protocols

Ping Pong Protocol Section 3.5.1
A simple ping-pong protocol for testing.
typed-protocols/src/Network/TypedProtocol/PingPong/Type.hs

Request Response Protocol Section 3.5.2
A ping pong like protocol which allows to exchanges data.
typed-protocols/src/Network/TypedProtocol/ReqResp/Type.hs

Handshake Mini Protocol Section 3.6
This protocol is used for version negotiation.
ouroboros-network/src/Ouroboros/Network/Protocol/Handshake/Type.hs

Chain Synchronisation Protocol Section 3.7
The protocol by which a downstream chain consumer follows an upstream chain producer.
ouroboros-network/src/Ouroboros/Network/Protocol/ChainSync/Type.hs

Block Fetch Protocol Section 3.8
The block fetching mechanism enables a node to download ranges of blocks.
ouroboros-network/src/Ouroboros/Network/Protocol/BlockFetch/Type.hs

Transaction Submission Protocol v2 Section 3.9.2
A Protocol for transmitting transaction between core nodes.
ouroboros-network/src/Ouroboros/Network/Protocol/TxSubmission2/Type.hs

Keep Alive Protocol Section 3.10
A protocol for sending keep alive messages and round trip measurements
ouroboros-network/src/Ouroboros/Network/Protocol/KeepAlive/Type.hs

Locat State Query Mini Protocol Section 3.12
Protocol used by local clients to query ledger state
ouroboros-network/src/Ouroboros/Network/Protocol/LocalStateQuery/Type.hs

3.4 CBOR and CDDL
All mini-protocols are encoded using concise binary object representation (CBOR), see https://cbor.io. Each
codec comes along with a specification written in CDDL, see ’Coincise data definition language (CDDL)’.

Note that the networking layer knows very little about blocks, transactions or their identifiers. We use parametric
polymorphism in the implementation which is not present in CDDL. For this reason we use any in our CDDL
specifications. If you want to find concrete instatiations of these types in by ‘Cardano‘ you will need to consult
cardano-ledger and ouroboros-consensus. Each ledger era has its own CDDL spec which you can find here. Note that
there’s also the hard fork combinator (HFC) which allows us to combine multiple eras into a single blockchain. It affects

11

https://ouroboros-network.cardano.intersectmbo.org/typed-protocols-examples/Network-TypedProtocol-PingPong-Type.html#t:PingPong
https://ouroboros-network.cardano.intersectmbo.org/typed-protocols-examples/Network-TypedProtocol-ReqResp-Type.html#t:ReqResp
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network-framework/Ouroboros-Network-Protocol-Handshake-Type.html#t:Handshake
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-ChainSync-Type.html#t:ChainSync
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-BlockFetch-Type.html#t:BlockFetch
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-TxSubmission2-Type.html#t:TxSubmission2
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-KeepAlive-Type.html#t:KeepAlive
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-LocalStateQuery-Type.html#t:LocalStateQuery
https://cbor.io
https://cbor-wg.github.io/cddl/draft-ietf-cbor-cddl.html
https://github.com/intersectmbo/cardano-ledger
https://github.com/intersectmbo/ouroboros-consensus
https://github.com/intersectmbo/cardano-ledger#cardano-ledger

how many of the data types are encoded across different eras. Currently this is not properly documented (see issue #7).
In the meantime we can only offer informal advise: data is encoded as tuples (length 2 lists), where the first element is a
zero based index of an era while the second item is the era dependent encoding.

3.5 Dummy Protocols
Dummy protocols are only used for testing and are not needed either for Node-to-Node nor for the Node-to-Client
protocols.

3.5.1 Ping-Pong mini-protocol
haddock documentation: Network.TypedProtocol.PingPong.Type

Description

A client can use the Ping-Pong protocol to check that the server is responsive. The Ping-Pong protocol is very simple
because the messages do not carry any data and because the Ping-Pong client and the Ping-Pong server do not access the
internal state of the node.

State Machine

StIdlestart StDone

StBusy

MsgDone

MsgPing MsgPong

Agency
Client has Agency StIdle
Server has Agency StBusy

The protocol uses the following messages. The messages of the Ping-Pong protocol do not carry any data.

MsgPing The client sends a Ping request to the server.

MsgPong The server replies to a Ping with a Pong.

MsgDone Terminate the protocol.

3.5.2 Request-Response mini-protocol
haddock documentation: Network.TypedProtocol.ReqResp.Type

12

https://github.com/intersectmbo/ouroboros-consensus/issues/7
https://ouroboros-network.cardano.intersectmbo.org/typed-protocols-examples/Network-TypedProtocol-PingPong-Type#t:PingPong
https://ouroboros-network.cardano.intersectmbo.org/typed-protocols-examples/Network-TypedProtocol-ReqResp-Type.html#t:ReqResp

Transition table
from state message to state
StIdle MsgPing StBusy
StBusy MsgPong StIdle
StIdle MsgDone StDone

Table 3.1: Ping-Pong mini-protocol messages.

Description

The request response protocol is polymorphic in the request and response data that is being transmitted. This means that
there are different possible applications of this protocol and the application of the protocol determines the types of the
requests and responses.

State machine

Agency
Client has Agency StIdle
Server has Agency StBusy

StIdlestart StBusy

StDone

MsgReq

MsgResp

MsgDone

The protocol uses the following messages.

MsgReq (request) The client sends a request to the server.

MsgResp (response) The server replies with a response.

MsgDone (done) Terminate the protocol.

Transition table
from message parameters to
StIdle MsgReq request StBusy
StBusy MsgResp response StIdle
StIdle MsgDone StDone

Table 3.2: Request-Response mini-protocol messages.

13

3.6 Handshake mini-protocol
haddock documentation: Ouroboros.Network.Protocol.Handshake.Type

3.6.1 Description
The handshake mini protocol is used to negotiate the protocol version and the protocol parameters that are used by the
client and the server. It is run exactly once when a new connection is initialised and consists of a single request from the
client and a single reply from the server.

The handshake mini protocol is a generic protocol that can negotiate any kind protocol parameters. It only assumes
that protocol parameters can be encoded to, and decoded from, CBOR terms. A node, that runs the handshake protocol,
must instantiate it with the set of supported protocol versions and callback functions for handling the protocol parameters.
These callback functions are specific for the supported protocol versions.

The handshake mini protocol is designed to handle simultaneous TCP open.

3.6.2 State machine

Agency
Client has Agency StPropose
Server has Agency StConfirm

StProposestart StConfirm StDone

MsgProposeVersions

MsgAcceptVersion

MsgRefuse

MsgReplyVersion

Messages of the protocol:

MsgProposeVersions (versionTable) The client proposes a number of possible versions and protocol para-
meters.

MsgReplyVersion (versionTable) In TCP simultaneous open the client will receive MsgReplyVersion
(which was sent as MsgProposeVersions) as a reply to its own MsgProposeVersions; thus both
MsgProposeVersions and MsgReplyVersion have to have the same CBOR encoding.

MsgAcceptVersion (versionNumber, extraParameters) The server accepts versionNumber and re-
turns possible extra protocol parameters.

MsgRefuse (reason) The server refuses the proposed versions.

Transition table
from message/event parameters to
StPropose MsgProposeVersions versionTable StConfirm
StConfirm MsgReplyVersion versionTable StDone
StConfirm MsgAcceptVersion (versionNumber, extraParameters) StDone
StConfirm MsgRefuse reason StDone

14

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network-framework/Ouroboros-Network-Protocol-Handshake-Type#t:Handshake

3.6.3 Client and Server Implementation
Section 3.6.7 contains the CDDL-specification of the binary format of the handshake messages. The version table is
encoded as a CBOR table with the version number as key and the protocol parameters as value. The handshake protocol
requires that the version numbers (i.e. the keys) in the version table are unique and appear in ascending order. (Note,
that CDDL is not expressive enough to precisely specify that requirement on the keys of the CBOR table. Therefore the
CDDL-specification uses a table with keys from 1 to 4 as an example.)

In a run of the handshake mini protocol the peers exchange only two messages: The client requests to connect
with a MsgProposeVersions message that contains information about all protocol versions it wants to support.
The server replies either with an MsgAcceptVersion message containing the negotiated version number and extra
parameters or a MsgRefuse message. The MsgRefuse message contains one of three alternative refuse reasons:
VersionMismatch, HandshakeDecodeError or just Refused.

When a server receives a MsgProposeVersions message it uses the following algorithm to compute the
response:

1. Compute the intersection of the set of protocol version numbers that the server support and the version numbers
requested by the client.

2. If the intersection is empty: Reply with MsgRefuse(VersionMismatch) and the list of protocol numbers
the server supports.

3. Otherwise: Select the protocol with the highest version number in the intersection.

4. Run the protocol specific decoder on the CBOR term that contains the protocol parameters.

5. If the decoder fails: Reply with MsgRefuse(HandshakeDecodeError), the selected version number and
an error message.

6. Otherwise: Test the proposed protocol parameters of the selected protocol version

7. If the test refuses the parameters: Reply with MsgRefuse(Refused), the selected version number and an error
message.

8. Otherwise: Encode the extra parameters and reply with MsgAcceptVersion, the selected version number and
the extra parameters.

Note, that in step 4), 6) and 8) the handshake protocol uses the callback functions that are specific for set of protocols
that the server supports. The handshake protocol is designed, such that a server can always handle requests for protocol
versions that it does not support. The server simply ignores the CBOR terms that represent the protocol parameters of
unsupported version.

In case of simultaneous open of a TCP connection, both handshake clients will send their MsgProposeVersions,
both will interpret the incoming message as MsgReplyVersion (thus both must have the same encoding, the
implementation can distinguish them by the protocol state). Both clients should choose the highest version of the
protocol available. If any side does not accept any version (or its parameters) it can reset the connection.

The protocol does not forbid, nor could it detect a usage of MsgReplyVersion outside of TCP simultaneous
open. The process of choosing between proposed and received version must be symmetric, in the following sense:

We use acceptable :: vData -> vData -> Accept vData function to compute accepted version data
from proposed and received data, where

data Accept vData = Accept vData
| Refuse Text
deriving Eq

See ref. Both acceptable proposed received and acceptable received proposed must sat-
isfy the following condition:

• if either of them accepts a version by returning Accept, the other one must accept the same value, i.e. in
this case acceptable proposed received == acceptable received proposed

15

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network-framework/Ouroboros-Network-Protocol-Handshake-Version.html#t:Acceptable

• if either of them refuses to accept (returns Refuse reason) the other one shall return Refuse as well.

Note that the above condition guarantees that if either side returns Accept then the connection will not be closed by the
remote end. A weaker condition, in which the return values are equal if they both return Accept, does not guarantee
this property. We also verify that the whole Handshake protocol, not just the acceptable satisfies the above property,
see Ouroboros-Network test suite.

The fact that we are using non-injective encoding in the handshake protocol side steps typed-protocols strong
typed-checked properties. For injective codecs (i.e. codecs for which each message has a distinguished encoding), both
sides of typed-protocols are always at the same state (once all in-flight message arrived). This is no longer true in general,
however this is still true for the handshake protocol. Event though the opening message MsgProposeVersions
of a simultaneous open, will materialise on the other side as termination message MsgReplyVersions, the
same will happen to the MsgProposeVersion transmitted in the other direction. We include a special test case
(prop_channel_simultaneous_open) to verify that simultaneous open well behaves and does not lead to
protocol errors.

The handshake mini protocol runs before the MUX/DEMUX itself is initialised. Each message is transmitted within
a single MUX segment, i.e. with a proper segment header, but, as the MUX/DEMUX is not yet running the messages
must not be split into multiple segments. These MUX segments are using a reserved protocol id 0 (Muxcontrol).

3.6.4 Handhsake version 11 and greater
In most recent versions of Handshake negotiated node-to-node version data has one more parameter: Peer Sharing
willingness information. This is a flag that can be globally configured by the node, to let others know if a particular
node wants to participate or not in Peer Sharing. This addition breaks the symmetry of acceptable since, upon
negotiating handshake, each node keeps the remote side value of the Peer Sharing flag. This can be solved by making
acceptable symmetric modulo peer sharing flag.

This new flag addition also means that, for testing purposes, we are going to need two different CDDL specifications:
one for versions < 11 and one for versions ≥ 11.

3.6.5 CDDL encoding specification (< 11)
There are two flavours of the mini-protocol which only differ with type instantiations, e.g. different protocol versions
and version data carried in messages. First one is used by the node to node protocol the other by node to client protocol.

Node to node handshake mini-protocol

1 ;
2 ; NodeToNode Handshake , v7 t o v10
3 ;
4
5 handshakeMessage
6 = msgProposeVersions
7 / msgAcceptVersion
8 / msgRefuse
9

10 msgProposeVersions = [0 , vers ionTable]
11 msgAcceptVersion = [1 , versionNumber , nodeToNodeVersionData]
12 msgRefuse = [2 , refuseReason]
13
14 vers ionTable = { * versionNumber => nodeToNodeVersionData }
15
16 versionNumber = 7 / 8 / 9 / 10
17
18 nodeToNodeVersionData = [networkMagic , i n i t i a t o r O n l y D i f f u s i o n M o d e]
19
20 ; range be tween 0 and 0 x f f f f f f f f
21 networkMagic = 0..4294967295

16

https://github.com/intersectmbo/ouroboros-network/blob/master/ouroboros-network/protocol-tests/Ouroboros/Network/Protocol/Handshake/Test.hs
https://github.com/intersectmbo/ouroboros-network/blob/master/ouroboros-network/protocol-tests/Ouroboros/Network/Protocol/Handshake/Test.hs#L551

22 i n i t i a t o r O n l y D i f f u s i o n M o d e = bool
23
24 refuseReason
25 = refuseReasonVersionMismatch
26 / refuseReasonHandshakeDecodeError
27 / refuseReasonRefused
28
29 refuseReasonVersionMismatch = [0 , [* versionNumber]]
30 refuseReasonHandshakeDecodeError = [1 , versionNumber , t s t r]
31 refuseReasonRefused = [2 , versionNumber , t s t r]

Node to client handshake mini-protocol

1 ;
2 ; NodeToCl i en t Handshake
3 ;
4
5 handshakeMessage
6 = msgProposeVersions
7 / msgAcceptVersion
8 / msgRefuse
9 / msgQueryReply

10
11 msgProposeVersions = [0 , vers ionTable]
12 msgAcceptVersion = [1 , oldVersionNumber , oldNodeToClientVersionData]
13 / [1 , versionNumber , nodeToClientVersionData]
14 msgRefuse = [2 , refuseReason]
15 msgQueryReply = [3 , vers ionTable]
16
17 ; E n t r i e s must be s o r t e d by v e r s i o n number . For t e s t i n g , t h i s i s hand led i n ‘ handshakeFix ‘ .
18 vers ionTable = { * oldVersionNumber => oldNodeToClientVersionData
19 , * versionNumber => nodeToClientVersionData
20 }
21
22
23 ; V e r s i o n 15 i n t r o d u c e s t h e v e r s i o n query f l a g
24 ; as o f v e r s i o n 2 (which i s no l o n g e r s u p p o r t e d) we s e t 15 t h b i t t o 1
25 ; 15 / 16
26 versionNumber = 32783 / 32784
27
28 ; as o f v e r s i o n 2 (which i s no l o n g e r s u p p o r t e d) we s e t 15 t h b i t t o 1
29 ; 9 / 10 / 11 / 12 / 13 / 14
30 oldVersionNumber = 32777 / 32778 / 32779 / 32780 / 32781 / 32782
31
32 anyVersionNumber = versionNumber / oldVersionNumber
33
34 ; As o f v e r s i o n 15 and h i g h e r
35 nodeToClientVersionData = [networkMagic , query]
36
37 oldNodeToClientVersionData = networkMagic
38
39 networkMagic = u i n t
40 query = bool
41
42 refuseReason
43 = refuseReasonVersionMismatch
44 / refuseReasonHandshakeDecodeError
45 / refuseReasonRefused
46

17

47 refuseReasonVersionMismatch = [0 , [* anyVersionNumber]]
48 refuseReasonHandshakeDecodeError = [1 , anyVersionNumber , t s t r]
49 refuseReasonRefused = [2 , anyVersionNumber , t s t r]

3.6.6 CDDL encoding specification (11 to 12)
Node to node handshake mini-protocol

1 ;
2 ; NodeToNode Handshake , v11 t o v12
3 ;
4 handshakeMessage
5 = msgProposeVersions
6 / msgAcceptVersion
7 / msgRefuse
8 / msgQueryReply
9

10 msgProposeVersions = [0 , vers ionTable]
11 msgAcceptVersion = [1 , versionNumber , nodeToNodeVersionData]
12 msgRefuse = [2 , refuseReason]
13 msgQueryReply = [3 , vers ionTable]
14
15 vers ionTable = { * versionNumber => nodeToNodeVersionData }
16
17 versionNumber = 11 / 12
18
19 nodeToNodeVersionData = [networkMagic , i n i t i a t o r O n l y D i f f u s i o n M o d e , peerSharing , query]
20
21 ; range be tween 0 and 0 x f f f f f f f f
22 networkMagic = 0..4294967295
23 i n i t i a t o r O n l y D i f f u s i o n M o d e = bool
24 ; range be tween 0 and 2
25 peerSharing = 0 . . 2
26 query = bool
27
28 refuseReason
29 = refuseReasonVersionMismatch
30 / refuseReasonHandshakeDecodeError
31 / refuseReasonRefused
32
33 refuseReasonVersionMismatch = [0 , [* versionNumber]]
34 refuseReasonHandshakeDecodeError = [1 , versionNumber , t s t r]
35 refuseReasonRefused = [2 , versionNumber , t s t r]

3.6.7 CDDL encoding specification (≥ 13)
Node to node handshake mini-protocol

1 ;
2 ; NodeToNode Handshake , v13
3 ;
4 handshakeMessage
5 = msgProposeVersions
6 / msgAcceptVersion
7 / msgRefuse
8 / msgQueryReply
9

10 msgProposeVersions = [0 , vers ionTable]
11 msgAcceptVersion = [1 , versionNumber , nodeToNodeVersionData]
12 msgRefuse = [2 , refuseReason]

18

13 msgQueryReply = [3 , vers ionTable]
14
15 vers ionTable = { * versionNumber => nodeToNodeVersionData }
16
17 versionNumber = 13
18
19 nodeToNodeVersionData = [networkMagic , i n i t i a t o r O n l y D i f f u s i o n M o d e , peerSharing , query]
20
21 ; range be tween 0 and 0 x f f f f f f f f
22 networkMagic = 0..4294967295
23 i n i t i a t o r O n l y D i f f u s i o n M o d e = bool
24 ; range be tween 0 and 1
25 peerSharing = 0 . . 1
26 query = bool
27
28 refuseReason
29 = refuseReasonVersionMismatch
30 / refuseReasonHandshakeDecodeError
31 / refuseReasonRefused
32
33 refuseReasonVersionMismatch = [0 , [* versionNumber]]
34 refuseReasonHandshakeDecodeError = [1 , versionNumber , t s t r]
35 refuseReasonRefused = [2 , versionNumber , t s t r]

3.7 Chain-Sync mini-protocol
haddock documentation: Ouroboros.Network.Protocol.ChainSync.Type

3.7.1 Description
The chain synchronisation protocol is used by a block chain consumer to replicate the producer’s block chain locally.
A node communicates with several upstream and downstream nodes and runs an independent client instance and an
independent server instance for every other node it communicates with. (See Figure 1.1.)

The chain synchronisation protocol is polymorphic. The (full)-node to client protocol uses an instance of the chain
synchronisation protocol that transfers full blocks, while the node-to-node instance only transfers block headers. In the
node-to-node case, the block fetch protocol (Section 3.8) is used to transfer full blocks.

3.7.2 State Machine

Agency
Client has Agency StIdle
Server has Agency StCanAwait, StMustReply, StIntersect

The protocol uses the following messages:

MsgRequestNext Request the next update from the producer.

MsgAwaitReply Acknowledge the request but require the consumer to wait for the next update. This means that the
consumer is synced with the producer, and the producer is waiting for its own chain state to change.

MsgRollForward (header, tip) Tell the consumer to extend their chain with the given header. The message also
tells the consumer about the tip of the producers chain.

MsgRollBackward (pointold, tip Tell the consumer to roll back to a given pointold on their chain. The message
also tells the consumer about the current tip of the chain the producer is following.

19

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-ChainSync-Type#t:ChainSync

StIdlestart StDone

StCanAwait StMustReply

StIntersect

MsgRequestNext

MsgAwaitReply

MsgRollForward

MsgRollBackward

MsgRollBackward

MsgRollForward

MsgFindIntersect

MsgIntersectNotFound

MsgIntersectFound

MsgDone

Figure 3.1: State machine of the Chain-Sync mini-protocol.

MsgFindIntersect [pointhead] Ask the producer to try to find an improved intersection point between the
consumer and producer’s chains. The consumer sends a sequence [point] which shall be ordered by preference
(e.g. points with highest slot number first) and it is up to the producer to find the first intersection point on its
chain and send it back to the consumer. If an empty list of points is sent with MsgFindIntersect the server
will reply with MsgIntersectNotFound.

MsgIntersectFound (pointintersect, tip) The producer replies with the first point of the request that is on his
current chain. The consumer can decide whether to send more points. The message also tells the consumer about
the tip of the producer. Whenever the server replies with MsgIntersectFound the client can expect the next
update (i.e. a replay to MsgRequestNext) to be MsgRollBackward to the specified pointintersect (which
makes handling state updates on the client side easier).

MsgIntersectNotFound (tip) The reply to the consumer that no intersection was found: none of the points the
consumer supplied are on the producer chain. The message only contains the tip of the producer chain.

MsgDone Terminate the protocol.

3.7.3 Implementation of the Chain Producer
This section describes a stateful implementation of a chain producer that is suitable for a setting where the producer
cannot trust the chain consumer. An important requirement in this setting is that a chain consumer must never be able
to cause excessive resource use on the producer side. The presented implementation meets this requirement. It uses a
constant amount of memory to store the state that the producer maintains per chain consumer. This protocol is only used

20

Transition table
from state message parameters to state
StIdle MsgRequestNext StCanAwait
StIdle MsgFindIntersect [point] StIntersect
StIdle MsgDone StDone
StCanAwait MsgAwaitReply StMustReply
StCanAwait MsgRollForward header, tip StIdle
StCanAwait MsgRollBackward headerold, tip StIdle
StMustReply MsgRollForward header, tip StIdle
StMustReply MsgRollBackward pointold, tip StIdle
StIntersect MsgIntersectFound pointintersect, tip StIdle
StIntersect MsgIntersectNotFound tip StIdle

Table 3.3: Chain-Sync mini-protocol messages.

to reproduce the producer chain locally by consumer. By running many instances of this protocol against different peers,
a node can reproduce chains in the network and do chain selection which by design is not part of this protocol. Note,
that when we refer to the consumer’s chain in this section, we mean the chain that is reproduced by the consumer with
the instance of the chain-sync protocol under consideration and not the result of the chain selection algorithm.

We call the state which the producer maintains about the consumer the read-pointer. The read-pointer basically
tracks what the producer knows about the head of the consumer’s chain without storing it locally. It points to a block
on the current chain of the chain producer. The read-pointers are part of the shared state of the node (Figure 1.1) and
read-pointers are concurrently updated by the thread that runs the chain-sync mini-protocol and the chain tracking logic
of the node itself.

We first describe how the mini-protocol updates a read-pointer and later address what happens in case of a fork.

Initializing the read-pointer. The chain producer assumes that a consumer, which has just connected, only knows
the genesis block and initialises the read-pointer of that consumer with a pointer to the genesis block on its chain.

Downloading a chain of blocks A typical situation is when the consumer follows the chain of the producer but is
not yet at the head of the chain (this also covers a consumer booting from genesis). In this case, the protocol follows a
simple, consumer-driven, request-response pattern. The consumer sends MsgRequestNext messages to ask for the
next block. If the read-pointer is not yet at the head of the chain, the producer replies with a MsgRollForward and
advances the read-pointer to the next block (optimistically assuming that the client will update its chain accordingly).
The MsgRollForward message contains the next block and also the head-point of the producer. The protocol follows
this pattern until the read-pointer reaches the end of its chain.

Producer driven updates If the read-pointer points to the end of the chain and the producer receives a
MsgRequestNext the consumers chain is already up to date. The producer informs the consumer with an MsgAwaitReply
that no new data is available. After receiving a MsgAwaitReply, the consumer just waits for a new message and the
producer keeps agency. The MsgAwaitReply switches from a consumer driven phase to a producer driven phase.

The producer waits until new data becomes available. When a new block is available, the producer will send a
MsgRollForward message and give agency back to the consumer. The producer can also get unblocked when its
node switches to a new chain fork.

Producer switches to a new fork The node of the chain producer can switch to a new fork at any time, independent
of the state machine. A chain switch can cause an update of the read-pointer, which is part of the mutable state that is
shared between the thread that runs the chain sync protocol and the thread that implements the chain following logic of
the node. There are two cases:

1) If the read-pointer points to a block that is on the common prefix of the new fork and the old fork, no update of
the read-pointer is needed.

21

head

block: 42
hash: cdf0

block: 41
hash: e4e0

block: 40
hash: 5de3

block: 39
hash: fa40

head

block: 42
hash: cdf0

block: 41
hash: e4e0

block: 40
hash: 5de3

block: 39
hash: fa40

RequestNext

RollForward

5de3

ProducerConsumer

Figure 3.2: Consumer driven block download.

2) If the read-pointer points to a block that is no longer part of the chain that is followed by the node, the read-pointer
is set to the last block that is common between the new and the old chain. The node also sets a flag that signals the
chain-sync thread to send a MsgRollBackward instead of a MsgRollForward. Finally the producer thread must
unblock if it is in the StMustReply state.

head

New chain

Old chain fork
no longer tracked
by the producer

Next message:
RollBackward
to block 39, fa40

block: 41
hash: e4e0

block: 40
hash: 5de3

block: 39
hash: fa40

block: 40
hash: aab4

block: 41
hash: 660f

Read pointer

block: 42
hash: cdf0

Figure 3.3: read-pointer update for a fork switch in case of a rollback.

Figure 3.3 illustrates a fork switch that requires an update of the read-pointer for one of the chain consumers, i.e. an
example for case 2. Before the switch, the read-pointer of the consumer points to block 0x660f . The producer switches
to a new chain with the head of the chain at block 0xcdf0. The node must update the read-pointer to block 0xfa40 and
the next message to the consumer will be a MsgRollBackward.

Note, that a node typically communicates with several consumers. For each consumer it runs an independent
version of the chain-sync-protocol state machine in an independent thread and with its own read-pointer. Each of those
read-pointers has to be updated independently and for each consumer either case 1) or case 2) can apply.

Consumer starts with an arbitrary fork Typically, the consumer already knows some fork of the block chain
when it starts to track the producer. The protocol provides an efficient method to search for the longest common prefix
(here called intersection) between the fork of the producer and the fork that is known to the consumer.

To do so, the consumer sends a MsgFindIntersect message with a list of chain points on the chain known to

22

the consumer. If the producer does not know any of the points it replies with MsgIntersectNotFound. Otherwise
it replies with MsgIntersectFound and the best (i.e. the newest) of the points that it knows and also updates the
read-pointer accordingly. For efficiency, the consumer should use a binary search scheme to search for the longest
common prefix.

It is advised that the consumer always starts with MsgFindIntersect in a fresh connection and it is free to
use MsgFindIntersect at any time later as seems beneficial. If the consumer does not know anything about the
producer’s chain, it can start the search with the following list of points: [point(b), point(b−1), point(b−2), point(b−
4), point(b− 8), . . .] where point(b− i) is the point of the ith predecessor of block b and b is the head of the consumer
fork. Maximum depth of a fork in Ouroboros is bounded and the intersection will always be found with a small number
of iterations of this algorithm.

Additional remarks Note that by sending MsgFindIntersect the server will not modify its read-pointer.

3.7.4 Implementation of the Chain Consumer
In principle, the chain consumer has to guard against a malicious chain producer as much as the other way around.
However, two aspects of the protocol play in favour of the consumer here.

• The protocol is basically consumer driven, i.e. the producer has no way to send unsolicited data to the consumer
(within the protocol).

• The consumer can verify the response data itself.

Here are some cases to consider:

MsgFindIntersect Phase The consumer and the producer play a number guessing game, so the consumer can
easily detect inconsistent behaviour.

The producer replies with a MsgRollForward The consumer can verify the block itself with the help of the ledger
layer. (The consumer may need to download the block first, if the protocol only sends block headers.)

The producer replies with a MsgRollBackward The consumer tracks several producers, so if the producer sends
false MsgRollBackward messages the consumer’s node will, at some point, just switch to a longer chain fork.

The Producer is just passive/slow The consumer’s node will switch to a longer chain coming from another producer
via another instance of chain-sync protocol.

3.7.5 CDDL encoding specification

1 chainSyncMessage
2 = msgRequestNext
3 / msgAwaitReply
4 / msgRollForward
5 / msgRollBackward
6 / msgFindIn tersect
7 / msgIntersectFound
8 / msgIntersectNotFound
9 / chainSyncMsgDone

10
11 msgRequestNext = [0]
12 msgAwaitReply = [1]
13 msgRollForward = [2 , header , t i p]
14 msgRollBackward = [3 , po in t , t i p]
15 msgFindIntersect = [4 , po in t s]
16 msgIntersectFound = [5 , po in t , t i p]
17 msgIntersectNotFound = [6 , t i p]
18 chainSyncMsgDone = [7]

23

See appendix A for common definitions.

3.8 Block-Fetch mini-protocol
haddock documentation: Ouroboros.Network.Protocol.BlockFetch.Type

3.8.1 Description
The block fetching mechanism enables a node to download a range of blocks.

3.8.2 State machine

Agency
Client has Agency StIdle
Server has Agency StBusy, StStreaming

StIdlestart StDone

StBusy StStreaming

MsgClientDone

MsgRequestRange MsgNoBlocks

MsgStartBatch
MsgBlock

MsgBatchDone

Figure 3.4: State machine of the block-fetch mini-protocol.

Protocol messages

MsgRequestRange (range) The client requests a range of blocks from the server.

MsgNoBlocks The server tells the client that it does not have all of the blocks in the requested range.

MsgStartBatch The server starts block streaming.

MsgBlock (body) Stream a single block’s body.

MsgBatchDone The server ends block streaming.

MsgClientDone The client terminates the protocol.

Transition table is shown in table 3.4.

3.8.3 CDDL encoding specification

1 ;
2 ; B l o c k F e t c h mini −p r o t o c o l
3 ;
4
5 ; r e f e r e n c e i m p l e m e n t a t i o n o f t h e codec i n :
6 ; ouroboros −ne twork / s r c / Ouroboros / Network / P r o t o c o l / B l o c k F e t c h / Codec . hs
7

24

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-BlockFetch-Type#t:BlockFetch

Transition table
from state message parameters to state
StIdle MsgClientDone StDone
StIdle MsgRequestRange range StBusy
StBusy MsgNoBlocks StIdle
StBusy MsgStartBatch StStreaming
StStreaming MsgBlock body StStreaming
StStreaming MsgBatchDone StIdle

Table 3.4: Block-Fetch mini-protocol messages.

8 blockFetchMessage
9 = msgRequestRange

10 / msgClientDone
11 / msgStartBatch
12 / msgNoBlocks
13 / msgBlock
14 / msgBatchDone
15
16 msgRequestRange = [0 , po in t , po i n t]
17 msgClientDone = [1]
18 msgStartBatch = [2]
19 msgNoBlocks = [3]
20 msgBlock = [4 , b lock]
21 msgBatchDone = [5]

See appendix A for common definitions.

3.9 Tx-Submission mini-protocol

3.9.1 Version 1
Version 1 of the tx-submission protocol is no longer supported.

3.9.2 Version 2
haddock documentation: Ouroboros.Network.Protocol.TxSubmission2.Type

Description

The node-to-node transaction submission protocol is used to transfer transactions between full nodes. The protocol
follows a pull-based strategy where the initiator asks for new transactions and the responder sends them back. It is
suitable for a trustless setting where both sides need to guard against resource consumption attacks from the other side.
The local transaction submission protocol, which is used when the server trusts a local client, is described in Section
3.11.

The version 2 is used by version 6 and higher of node-to-node protocol.

State machine

Agency
Client has Agency StInit, StTxIdsBlocking, StTxIdsNonBlocking, StTxs
Server has Agency StIdle

25

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-TxSubmission2-Type#t:TxSubmission2

StInitstart StIdle

StDoneStTxIdsBlockingStTxIdsNonBlocking

StTxs

MsgInit

MsgDone

MsgRequestTxIdsBlocking

MsgReplyTxIds

MsgReplyTxIds

MsgRequestTxIdsNonBlocking

MsgRequestTxs

MsgReplyTxs

Figure 3.5: State machine of the Tx-Submission mini-protocol (version 2).

Protocol messages

MsgInit initial message of the protocol

MsgRequestTxIdsBlocking (ack, req) The server asks for new transaction ids and acknowledges old ids. The
client will block until new transactions are available.

MsgRequestTxIdsNonBlocking (ack, req) The server asks for new transaction ids and acknowledges old ids.
The client immediately replies (possible with an empty list).

MsgReplyTxIds ([(id, size)]) The client replies with a list of available transactions. The list contains pairs of
transactions ids and the corresponding size of the transaction in bytes. In the blocking case the reply is guaranteed
to contain at least one transaction. In the non-blocking case, the reply may contain an empty list.

MsgRequestTxs ([ids]) The server requests transactions by sending a list of transaction-ids.

MsgReplyTxs ([txs]) The client replies with a list transaction.

MsgDone The client terminates the mini protocol.

CDDL encoding specification

1 ;
2 ; T x S u b m i s s i o n mini −p r o t o c o l v2
3 ;
4
5 ; r e f e r e n c e i m p l e m e n t a t i o n o f t h e codec i n :
6 ; ouroboros −ne twork / s r c / Ouroboros / Network / P r o t o c o l / TxSubmis s ion2 / Codec . hs
7
8 txSubmission2Message
9 = msgIn i t

10 / msgRequestTxIds

26

Transition table
from state message parameters to state
StInit MsgInit StIdle
StIdle MsgRequestTxIdsBlocking ack,req StTxIdsBlocking
StTxIdsBlocking MsgReplyTxIds [(id, size)] StIdle
StIdle MsgRequestTxIdsNonBlocking ack,req StTxIdsNonBlocking
StTxIdsNonBlocking MsgReplyTxIds [(id, size)] StIdle
StIdle MsgRequestTxs [ids] StTxs
StTxs MsgReplyTxs [txs] StIdle
MsgRequestTxIdsBlocking MsgDone StDone

Table 3.5: Tx-Submission mini-protocol (version 2) messages.

11 / msgReplyTxIds
12 / msgRequestTxs
13 / msgReplyTxs
14 / tsMsgDone
15
16
17 msgIn i t = [6]
18 msgRequestTxIds = [0 , tsB lock ing , txCount , txCount]
19 msgReplyTxIds = [1 , [* tx IdAndSize]]
20 msgRequestTxs = [2 , t x I d L i s t]
21 msgReplyTxs = [3 , t x L i s t]
22 tsMsgDone = [4]
23
24 t sB lock ing = f a l s e / t r ue
25 txCount = word16
26 ; The codec o n l y a c c e p t s i n f i n i t e −l e n g t h l i s t e n c o d i n g f o r t x I d L i s t !
27 t x I d L i s t = [* t x I d]
28 t x L i s t = [* t x]
29 tx IdAndSize = [t x Id , t xS ize InBy tes]
30 t xS ize InBy tes = word32

See version 1 of the mini-protocol in section ?? and appendix A for common definitions.
3.9.3 Client and Server Implementation
The protocol has two design goals: It must diffuse transactions with high efficiency and, at the same time, it must rule
out asymmetric resource attacks from the transaction consumer against the transaction provider.

The protocol is based on two pull-based operations. The transaction consumer can ask for a number of transaction
ids and it can use these transaction ids to request a batch of transactions. The transaction consumer has flexibility in the
number of transaction ids it requests, whether to actually download the transaction body of a given id and flexibility in
how it batches the download of transactions. The transaction consumer can also switch between requesting transaction
ids and downloading transaction bodies at any time. It must however observe several constraints that are necessary for a
memory efficient implementation of the transaction provider.

Conceptually, the provider maintains a limited size FIFO of outstanding transactions per consumer. (The actual
implementation can of course use the data structure that works best). The maximum FIFO size is a protocol parameter.
The protocol guarantees that, at any time, the consumer and producer agree on the current size of that FIFO and on the
outstanding transaction ids. The consumer can use a variety of heuristics for requesting transaction ids and transactions.
One possible implementation for a consumer is to maintain a FIFO which mirrors the producers FIFO but only contains
the transaction ids (and the size of the transaction) and not the full transactions.

After the consumer requests new transaction ids, the provider replies with a list of transaction ids and puts these
transactions in its FIFO. As part of a request a consumer also acknowledges the number of old transactions, which are
removed from the FIFO at the same time. The provider checks that the size of the FIFO, i.e. the number of outstanding
transactions, never exceeds the protocol limit and aborts the connection if a request violates the limits. The consumer
can request any batch of transactions from the current FIFO in any order. Note however, that the reply will omit any

27

transactions that have become invalid in the meantime. (More precisely the server will omit invalid transactions from
the reply but they will still be counted in the FIFO size and they still require an acknowledgement from the consumer).

The protocol supports blocking and non-blocking requests for new transactions ids. If the FIFO is empty the
consumer must use a blocking request otherwise a non-blocking request. The producer must reply immediately (i.e.
within a small timeout) to a non-blocking request. It replies with not more than the requested number of ids (possible
with an empty list). A blocking request on the other side, waits until at least one transaction is available.

3.10 Keep Alive Mini Protocol
haddock documentation: Ouroboros.Network.Protocol.KeepAlive.Type

3.10.1 Description
Keep alive mini-protocol is a member of node-to-node protocol. It is used for two purposes: to provide keep alive
messages, and do round trip time measurements.

3.10.2 State machine

Agency
Client has Agency StClient
Server has Agency StServer

StClientstart StServer

StDone

MsgKeepAlive

MsgKeepAliveResponse

MsgDone

Figure 3.6: State machine of the keep alive protocol.

Protocol messages

MsgKeepAlive cookie Keep alive message. The cookie value is a Word16 value which allows to match requests
with responses. It is a protocol error if the cookie received back with MsgKeepAliveResponse does not
match the value sent with MsgKeepAlive.

MsgKeepAliveResponse cookie Keep alive response message.

MsgDone Terminating message.

28

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-KeepAlive-Type#t:KeepAlive

3.10.3 CDDL encoding specification

1 ;
2 ; K e e p A l i v e Mini −P r o t o c o l
3 ;
4
5 keepAliveMessage = msgKeepAlive
6 / msgKeepAliveResponse
7 / msgDone
8
9 msgKeepAlive = [0 , word16]

10 msgKeepAliveResponse = [1 , word16]
11 msgDone = [2]
12
13 word16 = 0..65535

3.11 Local Tx-Submission mini-protocol
haddock documentation: Ouroboros.Network.Protocol.LocalTxSubmission.Type

3.11.1 Description
The local transaction submission mini protocol is used by local clients, for example wallets or CLI tools, to submit
transactions to a local node. The protocol is not used to forward transactions from one core node to another. The
protocol for the transfer of transactions between full nodes is described in Section 3.9.2.

The protocol follows a simple request-response pattern:

1. The client sends a request with a single transaction.

2. The Server either accepts the transaction (returning a confirmation) or rejects it (returning the reason).

Note, that the local transaction submission protocol is a push based protocol where the client creates a workload for the
server. This is acceptable because is protocol is only for use between a node and local client.

3.11.2 State machine

Agency
Client has Agency StIdle
Server has Agency StBusy

StIdlestart StDone

StBusy

MsgDone

MsgSubmitTx

MsgAcceptTx

MsgRejectTx

Figure 3.7: State machine of the Local Tx-Submission mini-protocol.

29

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-LocalTxSubmission-Type#t:LocalTxSubmission

Protocol messages

MsgSubmitTx (t) The client submits a transaction.

MsgAcceptTx The server accepts the transaction.

MsgRejectTx (reason) The server rejects the transactions and replies with the reason.

MsgDone The client terminates the mini protocol.

3.12 Local State Query mini-protocol
haddock documentation: Ouroboros.Network.Protocol.LocalStateQuery.Type

3.12.1 Description
Local State Query mini-protocol allows to query the consensus / ledger state. This mini protocol is part of the
Node-to-Client protocol, hence it is only used by local (and thus trusted) clients. Possible queries depend on the era
(Byron, Shelly, etc) and are not specified in this document. The protocol specifies basic operations like acquiring /
releasing the consensus / ledger state which is done by the server, or running queries against the acquired ledger state.

3.12.2 State machine

Agency
Server has Agency StIdle, Acquired
Client has Agency Acquiring, Querying

StIdlestart Acquiring Acquired Querying

StDone

MsgAcquire

MsgFailure

MsgAcquired

MsgReAcquire

MsgQuery

MsgRelease

MsgResult

MsgDone

Figure 3.8: State machine of the Local State Query mini-protocol.

Protocol messages See Figure 3.9, in which AcquireFailure is either AcquireFailurePointTooOld or AcquireFailurePointNotOnChain,
and Target is either ImmutableT ip, V olatileT ip, or SpecificPointpt.

The primary motivation for being able to acquire the ImmutableT ip is that it’s the most recent ledger state that the
node will never abandon: the node will never rollback to prefix of that immutable chain (unless the on-disk ChainDB is
corrupted/manipulated). Therefore, answers to queries against the ImmutableT ip are necessarily not subject rollback.

30

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-LocalStateQuery-Type#t:LocalStateQuery

Transition table
from state message parameters to state
StIdle MsgAcquire Target point Acquiring
Acquiring MsgFailure AcquireFailure StIdle
Acquiring MsgAcquired Acquired
Acquired MsgQuery query Querying
Querying MsgResult result Acquired
Acquired MsgReAcquire Target point Acquiring
Acquired MsgRelease StIdle
StIdle MsgDone StDone

Figure 3.9: Local State Query mini-protocol messages.

3.12.3 CDDL encoding specification

1 ;
2 ; L o c a l S t a t e Q u e r y mini −p r o t o c o l .
3 ;
4
5 localStateQueryMessage
6 = msgAcquire
7 / msgAcquired
8 / msgFai lure
9 / msgQuery

10 / msgResult
11 / msgRelease
12 / msgReAcquire
13 / lsqMsgDone
14
15 acqu i reFa i lu rePo in tTooOld = 0
16 acqui reFai lurePointNotOnChain = 1
17
18 f a i l u r e = acqu i reFa i lu rePo in tTooOld
19 / acqui reFai lurePointNotOnChain
20
21 query = any
22 r e s u l t = any
23
24 msgAcquire = [0 , po in t]
25 / [8]
26 / [1 0]
27 msgAcquired = [1]
28 msgFai lure = [2 , f a i l u r e]
29 msgQuery = [3 , query]
30 msgResult = [4 , r e s u l t]
31 msgRelease = [5]
32 msgReAcquire = [6 , po in t]
33 / [9]
34 / [1 1]
35 lsqMsgDone = [7]

See appendix A for common definitions.

3.13 Peer Sharing mini-protocol
haddock documentation: Ouroboros.Network.Protocol.PeerSharing.Type

31

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-Protocol-PeerSharing-Type#t:PeerSharing

3.13.1 Description
The Peer Sharing MiniProtocol is a simple Request-Reply protocol. Peer Sharing Protocol is used by nodes to perform
share requests to upstream peers. Requested peers will share a subset of their Known Peers.

3.13.2 State machine

Agency
Client has Agency StIdle
Server has Agency StBusy

StIdlestart StBusy

StDone

MsgShareRequest

MsgSharePeers

MsgDone

Figure 3.10: State machine of the peer sharing protocol.

Protocol messages

MsgShareRequest amount The client requests a maximum number of peers to be shared (amount). Ideally this
amount should limited by a protocol level constant to disallow a bad actor from requesting too many peers.

MsgSharePeers [peerAddress] The server replies with a set of peers. Ideally the amount of information (e.g.
reply byte size) should be limited by a protocol level constant to disallow a bad actor from sending too much
information.

MsgDone Terminating message.

3.13.3 Client Implementation Details
The initiator side will have to be running indefinitely since protocol termination means either an error or peer demotion.
Because of this the protocol won’t be able to be run as a simple request-response protocol. To overcome this the client
side implementation will use a registry so that each connected peer gets registered and assigned a controller with a
request mailbox. This controller will be used to issue requests to the client implementation which will be waiting for
the queue to be filled up to send a MsgShareRequest. After sending a request, the result is put into a local result
mailbox.

If a peer gets disconnected, it should get unregistered.

32

3.13.4 Server Implementation Details
As soon as the server receives a share request it needs to pick subset not bigger than the value specified in the request’s
parameter. The reply set needs to be sampled randomly from the Known Peer set according to the following constraints:

• Only pick peers that we managed to connect-to at some point

• Pick not known-to-be-ledger peers

• Pick peers that have a public willingness information (e.g. PeerSharingPublic).

If a peer has NoPeerSharing flag value do not ask it for peers. This peer won’t even have the Peer Sharing
miniprotocol server running.

If a given peer has PeerSharingPublic and DoNotAdvertise flags enabled at the same time, DoNotAdvertisePeer
should have priority, so the peer shouldn’t be shared. Also if a peer has PeerSharingPrivate and DoAdvertisePeer
enabled at the same time, PeerSharingPrivate should be respected. Given this, if a local/remote peer has ex-
pressed that its address should be private, when building the response set one should respect that privacy even if some
other public flag conflicts with it.

Computing the result (i.e. random sampling of available peers) needs access to the PeerSelectionState which
is specific to the peerSelectionGovernorLoop. However when initializing the server side of the protocol we
have to provide the result computing function early in the consensus side. This means we will have to find a way to
delay the function application all the way to diffusion and share the relevant parts of PeerSelectionState with
this function via a TVar.

3.13.5 CDDL encoding specification (11 to 12)

1 ;
2 ; Peer S h a r i n g M i n i P r o t o c o l
3 ;
4
5 peerSharingMessage = msgShareRequest
6 / msgSharePeers
7 / msgDone
8
9 msgShareRequest = [0 , byte]

10 msgSharePeers = [1 , peerAddresses]
11 msgDone = [2]
12
13 peerAddresses = [* peerAddress]
14
15 byte = 0. .255
16
17 peerAddress = [0 , word32 , portNumber] ; i p v 4 + portNumber
18 / [1 , word32 , word32 , word32 , word32 , f l ow In fo , scopeId , portNumber] ; i p v 6 + portNumber
19
20 portNumber = word16
21 f l o w I n f o = word32
22 scopeId = word32

3.13.6 CDDL encoding specification (≥ 13)

1 ;
2 ; Peer S h a r i n g M i n i P r o t o c o l
3 ;
4
5 peerSharingMessage = msgShareRequest
6 / msgSharePeers
7 / msgDone

33

8
9 msgShareRequest = [0 , byte]

10 msgSharePeers = [1 , peerAddresses]
11 msgDone = [2]
12
13 peerAddresses = [* peerAddress]
14
15 byte = 0. .255
16
17 peerAddress = [0 , word32 , portNumber] ; i p v 4 + portNumber
18 / [1 , word32 , word32 , word32 , word32 , portNumber] ; i p v 6 + portNumber
19
20 portNumber = word16

3.14 Pipelining of Mini Protocols
Protocol pipelining is a technique that improves the performance of some protocols. The underlying idea is that a client,
which wants to perform several requests, just transmits those requests in sequence without blocking and waiting for
the reply from the server. In the reference implementation, pipelining is used by the clients of all mini protocol except
Chain-Sync. Those mini protocols follow a request-response pattern that is amenable to pipelining such that pipelining
becomes a feature of the client implementation that does not require any modifications of the server implementation.

As an example, let’s consider the Block-Fetch mini protocol. When a client follows the protocol and sends a
sequence of MsgRequestRange messages to the server the data stream from the client to the server will only consist
of MsgRequestRange messages (and a final MsgClientDone message) and no other message types. The server
can simply follow the state machine of the protocol and process the messages in turn, regardless whether the client
uses pipelining or not. The MUX/DEMUX layer (Section 2.1) guarantees that messages of the same mini protocol are
delivered in transmission order, and therefore the client can determine which response belongs to which request.

The MUX/DEMUX layer also provides a fixed size buffer between the egress of DEMUX and the ingress of mini
protocol thread. The size of this buffer is a protocol parameter that determines how many messages a client can send
before waiting for a reply from the server (see Section 2.1.3). The protocol requires that a client must never cause an
overrun of these buffers on a server node. If a message arrives at the server that would cause the buffer to overrun, the
server treats this case as a protocol violation of the peer (and closes the connection to the peer).

3.15 Node-to-node protocol
haddock documentation: Ouroboros.Network.NodeToNode
haddock documentation: Ouroboros.Network.NodeToNode.Version

The node-to-node protocol consists of the following protocols:

• chain-sync mini-protocol for headers (section 3.7)

• block-fetch mini-protocol (section 3.8)

• tx-submission mini-protocol; from NodeToNodeV _6 the version 2 is used (section ??)

• keep alive mini-protocol; from NodeToNodeV _3 (section 3.10)

Currently supported versions of the node-to-node protocol are listed in table 3.11.

3.16 Node-to-client protocol
haddock documentation: Ouroboros.Network.NodeToClient
haddock documentation: Ouroboros.Network.NodeToClient.Version

The node-to-client protocol consists of the following protocols:

34

https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToNode
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToNode-Version
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToClient
https://ouroboros-network.cardano.intersectmbo.org/ouroboros-network/Ouroboros-Network-NodeToClient-Version

version description
NodeToNodeV _1 initial version
NodeToNodeV _2 block size hints
NodeToNodeV _3 introduction of keep-alive mini-protocol
NodeToNodeV _4 introduction of diffusion mode in handshake mini-protocol
NodeToNodeV _5
NodeToNodeV _6 transaction submission version 2

Figure 3.11: Node-to-node protocol versions

• chain-sync mini-protocol for blocks (section 3.7)

• local-tx-submission mini-protocol (section 3.11)

• local-state-query mini-protocol; from version NodeToClient_2 (section 3.12)

Supported versions of node-to-client protocol are listed in table 3.12.

version description
NodeToClientV _1 initial version
NodeToClientV _2 added local-query mini-protocol
NodeToClientV _3
NodeToClientV _4 new queries added to local state query mini-protocol
NodeToClientV _5 allegra
NodeToClientV _6 mary
NodeToClientV _7 new queries added to local state query mini-protocol
NodeToClientV _8 codec changed for local state query mini-protocol

Figure 3.12: Node-to-client protocol versions

35

Chapter 4

Connection Manager State Machine
Specification

4.1 Introduction
As described in the Network Design document, the goal is to transition to a more decentralized network. To make that
happen, a plan was designed to come up with a P2P network that is capable to achieve desired network properties.
One key component of such design is the p2p governor, which is responsible for managing the cold/warm/hot peer
selection and managing the churn of these groups, and adjusting the targets in order for the network to reach the desired
properties. However, having warm and hot peers implies establishing a bearer connection; hot peers need to run several
mini-protocols, and each mini-protocol runs 2 instances (client and server). Which means that with a large enough
warm/hot peer target, there’s going to be a lot of resource waste when it comes to file descriptor usage. There’s also the
problem of firewalls, where it matters who tries to start a communication with whom (if it’s the client or the server).

Knowing this, it would be good to make the most of each connection and, in order to do so the Connection manager
was designed.

4.2 Components
Figure 4.1 illustrates the 3 main components of the decentralization process, from the perspective of a local node. In the
Outbound side, the p2p governor, as said previously, takes care of all connection initiation (outbound connections)
and decides which mini-protocols to run (established, warm or hot). In the Inbound side, the Server is just a simple
loop, responsible for accepting incoming connections; and the Inbound Protocol Governor role is to detect if
its local peer was added as a warm/hot peer in some other remote node, starting/restarting the required mini-protocols.
Another role of the Inbound Protocol Governor is to setup timers in some cases, e.g. if the remote end opened
a connection, and did not sent any message, the Inbound Protocol Governor will timeout after some time and
close the connection. The arrows in Figure 4.1 represent dependencies between components: server accepts a connection
which is then given to Connection manager. Connection manager exposes methods to update its state, whenever the
Inbound Protocol Governor notices that the connection was used (could be used due to warm
hot transitions).

One simple illustration of how these 3 components interact together:

• Server accepts a connection;

• Server registers that connection to the connection manager (which puts the connection in UnnegotiatedState
Inbound);

• Assuming the handshake was successful, the connection is put in InboundIdleStateτ Duplex;

• The remote end transitions the local node to warm (using the connection) within expected timeout;

36

https://ouroboros-network.cardano.intersectmbo.org/pdfs/network-design

Outbound side Inbound side

Peer-to-Peer Governor

• manages connection initiation
(dual of connection
acception)

• runs and monitors initiator
protocols on unidirectional or
duplex connections

Server

• accepts connections

• performs some amount of
dynamic rate limiting

Inbound Protocol Governor

• start/restart responder
mini-protocols on inbound
and outbound duplex
connections

Connection
Manager

Figure 4.1: 3 main components

• IPG (Inbound Protocol Governor) notifies the Connection manager about this state change, via promotedToWarmRemote.
Now the connection is in InboundState Duplex;

• Connection manager is asked for an outbound connection to that peer (by the p2p governor), it notices that it
already has a connection with that peer in InboundState Duplex, so it gives that connection to p2p governor
and updates its state to DuplexState.

You can find more information about the possible different connection states in section 4.3.3.
Figure 4.2 shows the high-level architecture of how the 3 components mentioned interact with each other. A single

Connection manager is shared between the Server and p2p governor, where, in case of an Outbound Duplex connection
is negotiated, the Server is notified via a control channel. Although in this document we will use Server and IPG
interchangeably, it is worth to keep them separate concepts for possible future developments.

4.3 Connection Manager

4.3.1 Overview
Connection manager is a lower-level component responsible for managing connections and its resources. Its responsibil-
ities consist of:

• Tracking each connection, in order to keep an eye on the bounded resources;

• Starting new connections, negotiating if the connection should be full-duplex or half-duplex, through the Connec-
tion Handler;

• Be aware of warm/hot transitions, in order to try and reuse already established connections;

• Negotiating which direction, which mini-protocol is going to run (Client → Server, Server→Client, or both);

• Taking care of a particularity of TCP connection termination (lingering connections).

The Connection manager creates and records accepted connections and keeps track of their state as negotiations, for
the connection and start/stop mini-protocols, are made. There’s an internal state machine that helps the Connection
manager keep track of the state of each connection, and help it make decisions when it comes to resource management
and connection reusing.

The Connection Handler drives through handshake negotiation and starts the multiplexer. The outcome of the
handshake negotiation is:

• the negotiated version of the protocol

37

Network
(other Peers, P2P

Governors)

Connect

P2P Governor
(Peer Selection

Governor)

Connection
Manager

Accept

Inbound Protocol
Governor

Server outbound duplex connection

requestOutboundConnection

demotedToColdRemote

unregisterOutboundConnection

includeInboundConnection

promotedToWarmRemote

unregisterInboundConnection

Control
Channel

Shared

Method

Legend

Figure 4.2: High-level architecture of how the 3 components interact

38

Figure 4.3: Duplex connection running severall mini-protocols

• negotiated parameters, which includes the mode in which the connection will be run (InitiatorOnlyMode,
ResponderOnlyMode,
InitiatorAndResponderMode - the first two are half-duplex, the last one is full-duplex mode)

• Handshake might error

The Connection Handler notifies the Connection manager about the result of a negotiation, which triggers a state
transition. If we can run the connection in full-duplex mode, then it is possible to run the bundles of mini-protocols in
both directions, and otherwise only in one direction. So, Figure 4.3 shows 6 mini protocols running, 3 in each direction.
If we negotiated only a unidirectional connection, then we’d only be running 3 (with the direction being based on which
peer established the connection).

From the point of view of the connection manager, it only matters whether an unidirectional or duplex connection
was negotiated. Unidirectional connections, are the ones which run either the initiator or responder side of mini-protocols,
exclusively, while duplex connections can run either or both initiator and responder protocols. Note that in the outbound
direction (initiator side), it is the p2p governor responsibility to decide which set of mini-protocols: established, warm
or hot, are running. On the inbound side (responder mini-protocols), we have no choice but to run all of them.

The connection manager should only be run in two MuxModes:

• ResponderMode or

• InitiatorAndResponderMode

, the InitiatorMode is not allowed, since that mode is reserved for special leaf nodes in the network (such as the
blockchain explorer, for example) and it doesn’t make sense to run a node-to-client client side.

The duplex mode: InitiatorAndResponderMode is useful for managing connection with external nodes
(node-to-node protocol), while ResponderMode is useful for running a server which responds to local connections
(server side of node-to-client protocol).

39

Connection manager can use at most one ipv4 and at most one ipv6 address. It will bind to the correct address
depending on the remote address type (ipv4/ipv6).

In this specification we will often need to speak about two nodes communicating via a TCP connection. We will
often call them local and remote ends of the connection or local / remote nodes; we will usually take the perspective of
the local node.

4.3.2 Types
Connection manager exposes two methods to register a connection:

data Connected peerAddr handle handleError
−− | We are connected and mux is running.
= Connected !(ConnectionId peerAddr) !handle

−− | There was an error during handshake negotiation .
| Disconnected !(ConnectionId peerAddr) !(Maybe handleError)

−− | Include outbound connection into ’ConnectionManager’.

−− This executes :
−−
−− * \(Reserve \) to \(Negotiated^{*}_{Outbound}\) transitions
−− * \(PromotedToWarm^{Duplex}_{Local}\) transition
−− * \(Awake^{Duplex}_{Local}\) transition
requestOutboundConnection
:: HasInitiator muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ peerAddr → m (Connected peerAddr handle handleError)

−− | Include an inbound connection into ’ConnectionManager’.

−− This executes :
−−
−− * \(Accepted \) \/ \(Overwritten \) to \(Negotiated^{*}_{Inbound}\) transitions
includeInboundConnection
:: HasResponder muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ socket → peerAddr → m (Connected peerAddr handle handleError)

The first one asks the connection manager to either connect to an outbound peer or, if possible, reuse a duplex
connection. The other one allows to register an inbound connection, which was accepted. Both methods are blocking
operations and return either an error (handshake negotiation error or a multiplexer error) or a handle to a negotiated
connection.

Other methods which are discussed in this specification:

−− | Custom either type for result of various methods.
data OperationResult a

= UnsupportedState !InState
| OperationSuccess a

−− | Enumeration of states , used for reporting ; constructors elided from this
−− specification .
data InState

−− | Unregister an outbound connection .
−−
−− This executes :
−−
−− * \(DemotedToCold^{*}_{Local}\) transitions

40

unregisterOutboundConnection
:: HasInitiator muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ peerAddr → m (OperationResult ())

−− | Notify the ’ConnectionManager’ that a remote end promoted us to a
−− /warm peer/.
−−
−− This executes :
−−
−− * \(PromotedToWarm^{Duplex}_{Remote}\) transition,
−− * \(Awake^{*}_{Remote}\) transition .
promotedToWarmRemote
:: HasInitiator muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ peerAddr → m (OperationResult InState)

−− | Notify the ’ConnectionManager’ that a remote end demoted us to a / cold
−− peer/.
−−
−− This executes :
−−
−− * \(DemotedToCold^{*}_{Remote}\) transition .
demotedToColdRemote
:: HasResponder muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ peerAddr −> m (OperationResult InState)

−− | Unregister outbound connection . Returns if the operation was successul .
−−
−− This executes :
−−
−− * \(Commit*{*}\) transition
−− * \(TimeoutExpired \) transition
unregisterInboundConnection
:: HasResponder muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ peerAddr → m (OperationResult DemotedToColdRemoteTr)

−− | Number of connections tracked by the server .
numberOfConnections
:: HasResponder muxMode ~ True
⇒ ConnectionManager muxMode socket peerAddr handle handleError m
→ STM m Int

4.3.3 Connection states
Each connection is either initiated by Inbound or Outbound side.

data Provenance
= Inbound
| Outbound

Each connection negotiates dataFlow:

data DataFlow
= Unidirectional
| Duplex

41

In Unidirectional data flow, the connection is only used in one direction: the outbound side runs initiator side
of mini-protocols, the inbound side runs responders; in Duplex mode, both inbound and outbound side runs initiator
and responder side of each mini-protocol. Negotiation of DataFlow is done by the handshake protocol, the final result
depends on two factors: negotiated version and InitiatorOnly flag which is announced through handshake. Each
connection can be in one of the following states:

data ConnectionState
−− Connection manger is about to connect to a peer .
= ReservedOutboundState

−− Connected to a peer , handshake negotiation is ongoing.
| UnnegotiatedState Provenance

−− Outbound connection, inbound idle timeout is ticking .
| OutboundStateτ DataFlow

−− Outbound connection, inbound idle timeout expired .
| OutboundState DataFlow

−− Inbound connection, but not yet used.
| InboundIdleStateτ DataFlow

−− Active inbound connection .
| InboundState DataFlow

−− Connection runs in duplex mode: either outbound connection negotiated
−− ’Duplex’ data flow , or ’InboundState Duplex’ was reused .
| DuplexState

−− Connection manager is about to close (reset) the connection , before it
−− will do that it will put the connection in ’OutboundIdleState’ and start
−− a timeout .
| OutboundIdleStateτ

−− Connection has terminated ; socket is closed , thread running the
−− connection is killed . For some delay (‘TIME_WAIT‘) the connection is kept
−− in this state until the kernel releases all the resources .
| TerminatingState

−− Connection is forgotten .
| TerminatedState

The above type is a simplified version of what is implemented. The real implementation tracks more detail, e.g.
connection id (the quadruple of ip addresses and ports), multiplexer handle, thread id etc., which we do not need to take
care in this specification. The rule of thumb is that all states that have some kind of timeout should be annotated with a
τ . In these cases we are waiting for any message that would indicate a warm or hot transition. If that does not happen
within a timeout we will close the connection.

In this specification we represent OutboundStateτ Unidirectional which is not used, the implementation
avoids this constructor, for the same reasons that were given above, regarding InitiatorMode.

Figure 4.4 shows all the transitions between ConnectionStates. Blue and Violet states represent states of an
Outbound connection, Green and Violet states represent states of an Inbound connection. Dashed arrows indicate
asynchronous transitions that are triggered, either by a remote node or by the connection manager itself.

Note that the vertical symmetry in the graph corresponds to local vs remote state of the connection, see table 4.1. The
symmetry is only broken by InboundIdleStateτ dataFlow which does not have a corresponding local equival-
ent. This is simply because, locally we immediately know when we start initiator-protocols, and the implementation is
supposed to do that promptly. This however, cannot be assumed about the inbound side.

Another symmetry that we tried to preserve is between Unidirectional and Duplex connections. The
Duplex side is considerably more complex as it includes interaction between Inbound and Outbound connections

42

•

ReservedOutboundState

UnnegotiatedState Outbound UnnegotiatedState Inbound

InboundIdleStateτ Duplex

InboundIdleStateτ Unidirectional
OutboundState Unidirectional

OutboundStateτ Duplex

OutboundState Duplex

InboundState Unidirectional

InboundState Duplex

DuplexState

OutboundIdleStateτ Duplex

OutboundIdleStateτ Unidirectional

TerminatingStateτ

TerminatedState

Reserve

Accepted

Connected Overwritten

NegotiatedUnidirectional
Outbound

NegotiatedDuplex
Outbound

NegotiatedDuplex
Inbound

NegotiatedUnidirectional
Inbound

C
om

m
itU

ni
di

re
ct

io
na

l R
em

ot
e

DemotedToColdUnidirectional
Remote

AwakeDuplex
Local

AwakeDuplex
Remote

DemotedToColdDuplex
Local

D
em

ot
ed

To
C

ol
dD

up
le

x Lo
ca

l

TimeoutExpired

P
ro

m
ot

ed
To

W
ar

m
D

up
le

x Lo
ca

l

A
w

ak
eD

up
le

x R
em

ot
e

D
em

ot
ed

To
C

ol
d

D
up

le
x Lo

ca
l

D
em

ot
ed

To
C

ol
d

D
up

le
x R

em
ot

e

P
ro

m
ot

ed
To

W
ar

m
D

up
le

x R
em

ot
e

C
om

m
itD

up
le

x R
em

ot
e

AwakeUnidirectional
Remote

DemotedToColdDuplex
Remote

D
em

ot
ed

To
C

ol
dU

ni
di

re
ct

io
na

l Lo
ca

l

CommitUnidirectional
Local

CommitDuplex
Local

Terminate

Figure 4.4: Outbound (blue & violet) and inbound (green & violet) connection states and allowed transitions.

43

local connection state remote connection state

UnnegotiatedState Outbound UnnegotiatedState Inbound

OutboundIdleStateτ dataFlow InboundIdleStateτ dataFlow

OutboundState dataFlow InboundState dataFlow

OutboundStateτ dataFlow InboundState dataFlow

InboundState dataFlow OutboundState dataFlow

DuplexState DuplexState

Table 4.1: Symmetry between local and remote states

(in the sense that inbound connection can migrate to outbound only and vice versa). However, the state machine for
an inbound only connection is the same whether it is Duplex or Unidirectional, see Figure 4.5. A connection
manager running in ResponderMode will use this state machine.

For node-to-client server it will be even simpler, as there we only allow for unidirectional connections. Nevertheless,
this symmetry simplifies the implementation.

4.3.4 Transitions
Reserve

When connection manager is asked for an outbound connection, it reserves a slot in its state for that connection. If
any other thread asks for the same outbound connection, the connection manager will raise an exception in that thread.
Reservation is done to guarantee exclusiveness for state transitions to a single outbound thread.

Connected

This transition is executed once an outbound connection successfully performed the connect system call.

Accepted and Overwritten

Transition driven by the accept system call. Once it returns, the connection manager might either not know about such
connection or, there might be one in ReservedOutboundState. The Accepted transition represents the former
situation, while the latter is captured by the Overwritten transition.

Let us note that if Overwritten transition happened, then on the outbound side, the scheduled connect call will fail.
In this case the p2p governor will recover, putting the peer in a queue of failed peers, and will either try to connect to
another peer, or reconnect to that peer after some time, in which case it would re-use the accepted connection (assuming
that a duplex connection was negotiated).

NegotiatedUnidirectional
Outbound and NegotiatedDuplex

Outbound

Once an outbound connection has been negotiated one of NegotiatedUnidirectional
Outbound or NegotiatedDuplex

Outbound
transition is performed, depending on the result of handshake negotiation. Duplex connections are negotiated only for
node-to-node protocol versions higher than NodeToNodeV_7 and neither side declared that it is an initiator only. the ex-

act ver-
sion num-
ber might
change

If duplex outbound connection was negotiated, the connection manager needs to ask the inbound protocol governor
to start and monitor responder mini-protocols on the outbound connection.

Implementation detail

This transition is done by the requestOutboundConnection.

44

•

ReservedOutboundState

UnnegotiatedState Inbound

InboundIdleStateτ Duplex InboundIdleStateτ Unidirectional

InboundState UnidirectionalInboundState Duplex

TerminatingStateτ

TerminatedState

Reserve

Accepted

Overwritten

NegotiatedDuplex
Inbound

NegotiatedUnidirectional
Inbound

AwakeUnidirectional
Remote

AwakeDuplex
Remote

CommitDuplex
Remote CommitUnidirectional

Remote

DemotedToColdDuplex
Remote

DemotedToColdUnidirectional
Remote

Terminate

Figure 4.5: Sub-graph of inbound states.

45

NegotiatedUnidirectional
Inbound and NegotiatedDuplex

Inbound

This transition is performed once handshake negotiated an unidirectional or duplex connection on an inbound connection.
For NegotiatedUnidirectional

Inbound, NegotiatedDuplex
Inbound, NegotiatedDuplex

Outbound transitions, the inbound pro-
tocol governor will restart all responder mini-protocols (for all established, warm and hot groups of mini-protocols) and
keep monitoring them.

Implementation detail

This transition is done by the includeInboundConnection.

Implementation detail

Whenever a mini-protocol terminates it is immediately restarted using an on-demand strategy. All node-to-node protocols
have initial agency on the client side, hence restarting them on-demand does not send any message.

AwakeDuplex
Local, AwakeDuplex

Remote and AwakeUnidirectional
Remote

All the awake transitions start either at InboundIdleStateτ dataFlow, the AwakeDuplex
Remote can also be

triggered on OutboundIdleStateτ Duplex.

Implementation detail

AwakeDuplex
Local transition is done by requestOutboundConnection on the request of p2p governor, while

AwakeDuplex
Remote and AwakeUnidirectional

Remote are triggered by incoming traffic on any of responder mini-protocols
(asynchronously if detected any warm/hot transition).

CommitUnidirectional
Remote, CommitDuplex

Remote

Both commit transitions happen after protocol idle timeout of inactivity (as the TimeoutExpired transition does). They
transition to TerminatingStateτ (closing the bearer). For duplex connections a normal shutdown procedure goes
through InboundIdleStateτ Duplex via CommitDuplex

Remote - which gave the name to this transition.
These transitions are triggered by inactivity of responder mini-protocols. They both protect against a client that

connects but never sends any data through the bearer; also, as part of a termination sequence, it is protecting us from
shutting down a connection which is transitioning between warm and hot states.

Both commit transitions:

• CommitDuplex
Remote

• CommitUnidirectional
Remote

need to detect idleness during time interval (which we call: protocol idle timeout). If during this time frame inbound
traffic on any responder mini-protocol is detected, one of the AwakeDuplex

Remote or AwakeUnidirectional
Remote transition

is performed. The idleness detection might also be interrupted by the local AwakeDuplex
Local transition.

Implementation detail

These transitions can be triggered by unregisterInboundConnection and
unregisterOutboundConnection (both are non-blocking), but the stateful idleness detection during
protocol idle timeout is implemented by the server.
The implementation is relaying on two properties:

• the multiplexer being able to start mini-protocols on-demand, which allows us to restart a mini-protocol as soon
as it returns, without disturbing idleness detection;

• the initial agency for any mini-protocol is on the client.

46

Implementation detail

Whenever an outbound connection is requested, we notify the server about a new connection. We do that also when
the connection manager hands over an existing connection. If inbound protocol governor is already tracking that
connection, we need to make sure that

• inbound protocol governor preserves its internal state of that connection;

• inbound protocol governor does not starts mini-protocols, as they are already running (we restart responders as
soon as the stop, using the on-demand strategy).

DemotedToColdUnidirectional
Local, DemotedToColdDuplex

Local

This transitions is driven by the p2p governor when it decides to demote the peer to cold state, its domain is
OutboundState dataFlow or OutboundStateτ Duplex. The target state is OutboundIdleStateτ

dataFlow in which the connection manager sets up a timeout. When the timeout expires connection manager
will do CommitdataFlow

Local transition, which will reset the connection.

Implementation detail

This transition is done by unregisterOutboundConnection.

DemotedToColdUnidirectional
Remote, DemotedToColdDuplex

Remote

Both transitions are edge-triggered, the connection manager is notified by the inbound protocol governor once it notices
that all responders became idle. Detection of idleness during protocol idle timeout is done in a separate step which is
triggered immediately, see section 4.3.4 for details.

Implementation detail

Both transitions are done by demotedToColdRemote.

PromotedToWarmDuplex
Local

This transition is driven by the local p2p governor when it promotes a cold peer to warm state. connection manager will
provide a handle to an existing connection, so that p2p governor can drive its state.

Implementation detail

This transition is done by requestOutboundConnection.

TimeoutExpired

This transition is triggered when the protocol idleness timeout expires while the connection is in OutboundStateτ

Duplex. The server starts this timeout when it triggers DemotedToColddataFlow
Remote transition. The connection

manager tracks the state of this timeout so we can decide if a connection in outbound state can terminate or it needs to
await for that timeout to expire.

Implementation detail

This transition is done by unregisterInboundConnection.

47

PromotedToWarmDuplex
Remote

This asynchronous transition is triggered by the remote peer. The inbound protocol governor can notice it by observing
multiplexer ingress side of running mini-protocols. It then should notify the connection manager.

Implementation detail

This transition is done by promotedToWarmRemote.
The implementation relies on two properties:

• all initial states of node-to-node mini-protocols have client agency, i.e. the server expects an initial message;

• all mini-protocols are started using on-demand strategy, which allows to detect when a mini-protocol is brought
to life by the multiplexer.

Prune transitions

First let us note that a connection in InboundState Duplex, could have been initiated by either side (Outbound or
Inbound). This means that even though a node might have not accepted any connection, it could end up serving peers
and possibly go beyond server hard limit, thus exceeding the number of allowed file descriptors. This is possible via the
following path:

Connected,

NegotiatedDuplex
Outbound,

PromotedToWarmDuplex
Remote,

DemotedToColdDuplex
Local

which leads from the initial state • to InboundState Duplex, the same state in which accepted duplex
connections end up. Even though the server rate limits connections based on how many connections are in this state, we
could end up exceeding server hard limit.

These are all transitions that potentially could lead to exceeding server hard limit, all of them are transitions from
some outbound / duplex state into an inbound / duplex state:

• DuplexState to InboundState Duplex (via DemotedToColdDuplex
Local)

• OutboundStateτ Duplex to InboundState Duplex (via DemotedToColdDuplex
Local)

• OutboundIdleStateτ Duplex to InboundState Duplex (via AwakeDuplex
Remote)

• OutboundStateτ Duplex to DuplexState (via PromotedToWarmDuplex
Remote)

• OutboundState Duplex to DuplexState (via PromotedToWarmDuplex
Remote)

To solve this problem, in any of the above transitions the connection manager will check if the server hard limit was
exceeded. If that happened, the connection manager will reset an arbitrary connection (with some preference).

The reason why going from OutboundStateτ Duplex (or OutboundState Duplex, or OutboundIdleStateτ

Duplex) to InboundState Duplexmight exceed the server hard limit is exacty the same as the DuplexState to
InboundState Duplex one. However, the reason why going from OutboundStateτ Duplex to DuplexState
might exceed the limit is more tricky. To reach a DuplexState one assumes there must have been an incoming
accepted connection, but there’s another way that two end-points can establish a connection without a node accepting it.
If two nodes try to request an outbound connection simultaneously, it is possible, for two applications to both perform
an active open to each other at the same time. This is called a simultaneous open. In a simultaneous TCP open, we can
have 2 nodes establishing a connection without any of them having explicitly accepted a connection, which can make a
server violate its file descriptor limit.

Given this, we prefer to reset an inbound connection rather than close an outbound connection because from
a systemic point of view, outbound connections are more valuable than inbound ones. If we keep the number of

48

https://flylib.com/books/en/3.223.1.190/1/

established peers to be smaller than the server hard limit, with a right policy we should never need to reset a connection
in DuplexState. However, when dealing with a connection that transitions from OutboundStateτ Duplex to
DuplexState, we actually need to make sure this connection is closed, because we have no way to know for sure if
this connection is the result of a TCP simultaneous open and there might not be any other connection available to prune
that can make space for this one.

The inbound protocol governor is in position to make an educated decision about which connection to reset. Initially,
we aim for a decision driven by randomness, but other choices are possible1 and the implementation should allow to
easily extend the initial choice.

CommitUnidirectional
Remote, CommitDuplex

Remote

Both commit transitions happen after protocol idle timeout of inactivity (as the TimeoutExpired transition does).
They transition to TerminatingStateτ (closing the bearer). For duplex connections a normal shutdown procedure
goes through InboundIdleStateτ Duplex via CommitDuplex

Remote - which gave the name to this transition, or
through OutboundIdleStateτ Duplex via CommitDuplex

Local transition.
These transitions are triggered by inactivity of responder mini-protocols. They both protect against a client that

connects but never sends any data through the bearer; also, as part of a termination sequence, it is protecting us from
shutting down a connection which is transitioning between warm and hot states.

Both commit transitions:

• CommitDuplex
Remote

• CommitUnidirectional
Remote

need to detect idleness during time interval (which we call: protocol idle timeout). If during this time frame inbound
traffic on any responder mini-protocol is detected, one of the AwakeDuplex

Remote or AwakeUnidirectional
Remote transition

is performed. The idleness detection might also be interrupted by the local AwakeDuplex
Local transition.

Implementation detail

These transitions can be triggered by unregisterInboundConnection and
unregisterOutboundConnection (both are non-blocking), but the stateful idleness detection during
protocol idle timeout is implemented by the inbound protocol governor. The implementation is relying on two properties:

• the multiplexer being able to start mini-protocols on-demand, which allows us to restart a mini-protocol as soon
as it returns, without disturbing idleness detection;

• the initial agency for any mini-protocol is on the client.

Implementation detail

Whenever an outbound connection is requested, we notify the server about a new connection. We do that also when
the connection manager hands over an existing connection. If inbound protocol governor is already tracking that
connection, we need to make sure that

• inbound protocol governor preserves its internal state of that connection;

• inbound protocol governor does not starts mini-protocols, as they are already running (we restart responders as
soon as the stop, using the on-demand strategy).

CommitUnidirectional
Local, CommitDuplex

Local

As previous two transitions, these also are trigged after protocol idle timeout, but this time are triggered on the outbound
side. These transition will reset the connection, and the timeout make sure that the remote end will be able to clear its
ingress queue before the TCP reset arrives. For a more detailed analysis see 4.3.6 section.

1We can take into account whether we are hot to the remote end, or for how long we have been hot to to the remote node.

49

Terminate

After a connection was closed, we keep it in TerminatingStateτ for the duration of wait time timeout. When the
timeout expires the connection is forgotten.
Add a haddock link to daTimeWaitTimeout

Connecting to oneself

The transitions described in this section can only happen when the connection manager was requested to connect to its
own listening socket and the address wasn’t translated by the OS or a NAT. This could happen only in very specific
situtations:

1. misconfiguration a system;

2. running a node on multiple interfaces;

3. in some cases it could also happen when learning about oneself from the ledger;

4. or due to peer sharing.

In some of these cases, the external IP address would need to agree with the internal one, which is true for some
cloud service providers.

Let us note that these connections effectively only add delay, and thus they will be replaced by the outbound governor
(by its churn mechanism).

These transitions are not indicated in the figure 4.4, instead they are shown bellow in figure 4.6.

SelfConn and SelfConn−1 We allow transitioning between

• UnnegotiatedState Outbound and

• UnnegotiatedState Inbound

or the other way. This transition is not guaranteed as on some systems in such case the outbound and inbound addresses
(as returned by the accept call) can be different. Whether SelfConn or SelfConn−1 will happen depending on the
race between the inbound and outbound sides.

SelfConn’ and SelfConn’−1 We also allow transitioning between

• InboundIdleStateτ dataFlow and

• OutboundState dataFlow

After the handshake is negotiated there is a race between inbound and outbound threads, which need to be resolved
consistently.

4.3.5 Protocol errors
If a mini-protocol errors, on either side, connection will be reset, and put in TerminatedState. This can happen in
any connection state.

4.3.6 Closing connection
By default when operating system is closing a socket it is done in the background, but when SO_LINGER option is set,
the close system call blocks until either all messages are sent or the specified linger timeout fires. Unfortunately, our
experiments showed that if the remote side (not the one that called close), delays reading the packets, then even with
SO_LINGER option set, the socket is kept in the background by the OS. On FreeBSD it is eventually closed cleanly,
on Linux and OSX it is reset. This behaviour gives the power to the remote end to keep resources for extended amount
of time, which we want to avoid. We thus decided to always use SO_LINGER option with timeout set to 0, which
always resets the connection (i.e. it sets the RST TCP flag). This has the following consequences:

50

• Four-way handshake used by TCP termination will not be used. The four-way handshake allows to close each
side of the connection separately. With reset, the OS is instructed to forget the state of the connection immediately
(including freeing unread ingress buffer).

• the system will not keep the socket in TIME_WAIT state, which was designed to:

– provide enough time for final ACK to be received;

– protect the connection from packets that arrive late. Such packets could interfere with a new connection
(see Stevens et al. (2003)).

The connection state machine makes sure that we close a connection only when both sides are not using the
connection for some time: for outbound connections this is configured by the timeout on the OutboundIdleStateτ

dataFlow, while for inbound connections by the timeout on the InboundIdleStateτ dataFlow. This ensures Add
haddock
link to
daProtocolIdleTimeout

that the application is able to read from ingress buffers before the RST packet arrives. Excluding protocol errors and
prune transitions, which uncooperatively reset the connection.

We also provide application level TIME_WAIT state: TerminatingStateτ , in which we keep a connection
which should also protect us from late packets from a previous connection. However the connection manager does
allow to accept new connections during TerminatingStateτ - it is the responsibility of the client to not re-connect
too early. For example, p2p governor enforces 60s idle period before it can reconnect to the same peer, after either a
protocol error or a connection failure.

From an operational point of view it’s important that connections are not held in TIME_WAIT state for too long.
This would be problematic when restarting a node (without rebooting the system) (e.g. when adjusting configuration).
Since we reset connections, this is not a concern.

4.3.7 Outbound connection
If the connection state is in either ReservedOutboundState, UnnegotiatedState Inbound or InboundState
Duplex then, when calling requestOutboundConnection the state of a connection leads to either OutboundState
Unidirectional or DuplexState.

If Unidirectional connection was negotiated, requestOutboundConnection must error. If Duplex
connection was negotiated it can use the egress side of this connection leading to DuplexState.

initial state (•): the connection manager does not have a connection with that peer. The connection is put in
ReservedOutboundState before connection manager connects to that peer;

UnnegotiatedState Inbound: if the connection manager accepted a connection from that peer, handshake
is ongoing; requestOutboundConnection will await until the connection state changes to InboundState
dataFlow.

InboundState Unidirectional: if requestOutboundConnection finds a connection in this state it
will error.

InboundState Duplex: if connection manager accepted connection from that peer and handshake negotiated a
Duplex data flow; requestOutboundConnection transitions to DuplexState.

TerminatingStateτ : block until TerminatedState and start from the initial state.

Otherwise: if connection manager is asked to connect to peer and there exists a connection which is in any other state,
e.g. UnnegotiatedState Outbound, OutboundState dataFlow, DuplexState, connection manager
signals the caller with an error, see section 4.2.

Figure 4.7 shows outbound connection state evolution, e.g. the flow graph of requestOutboundConnection.

51

OutboundState Duplex and DuplexState

Once an outbound connection negotiates Duplex data flow it transfers to OutboundState Duplex. At this point
we need to start responder protocols. This means that the connection manager needs a way to inform server (which
accepts and monitors inbound connections), to start the protocols and monitor that connection. This connection will
transition to DuplexState only once we notice incoming traffic on any of established protocols. Since this connection
might have been established via TCP simultaneous open, this transition to DuplexState can also trigger Prune
transitions if the number of inbound connections becomes above the limit.

Implementation detail

The implementation is using a TBQueue. Server is using this channel for incoming duplex outbound and all inbound
connections.

Termination

When p2p governor demotes a peer to cold state, an outbound connection needs to transition from either:

• OutboundState dataFlow to OutboundIdleStateτ dataFlow

• OutboundStateτ Duplex to InboundIdleStateτ Duplex

• DuplexState to InboundState Duplex

To support that the connection manager exposes a method:

unregisterOutboundConnection :: peerAddr → m ()

This method performs DemotedToColdUnidirectional
Local or DemotedToColdDuplex

Local transition. In the former case it
will shut down the multiplexer and close the TCP connection, in the latter case, beside changing the connection state, it
will also trigger Prune transitions if the number of inbound connections becomes above the limit.

Connection manager methods

The tables 4.2 and 4.3 show transitions performed by

• requestOutboundConnection and

• unregisterOutboundConnection

respectively.
The choice between no-op and error is solved by the following rule: if the calling component (e.g. p2p governor),

is able to keep its state in a consistent state with connection manager then use no-op, otherwise error. Since both
inbound protocol governor and p2p governor are using mux to track the state of the connection its actually impossible
that the state would be inconsistent.

4.3.8 Inbound connection
Initial states for inbound connection are either:

• initial state •;

• ReservedOutboundState: this can happen when requestOutboundConnection reserves a connec-
tion with ReservedOutboundState, but before it calls connect the accept call returned. In this case, the
connect call will fail and, as a consequence, requestOutboundConnection will fail too. Any mutable
variables used by it can be disposed, since there is no thread that could be blocked on it: if there was another
thread that asked for an outbound connection with that peer it would see ReservedOutboundState and
throw ConnectionExists exception.

To make sure that this case is uncommon, we need to guarantee that the connection manager does not block
between putting the connection in the ReservedOutboundState and calling the connect system call.

52

State Action

• • ReservedOutboundState,

• Connected,

• start connection thread (handshake, mux)

• NegotiatedUnidirectional
Outbound or Negoti-

atedDuplex
Outbound

ReservedOutboundState error ConnectionExists

UnnegotiatedState Outbound error ConnectionExists

UnnegotiatedState Inbound await for InboundState dataFlow,
if negotiated duplex connection trans-
ition to DuplexState, otherwise error
ForbiddenConnection

OutboundState dataFlow error ConnectionExists

OutboundStateτ Duplex error ConnectionExists

OutboundIdleStateτ dataFlow error ForbiddenOperation

InboundIdleStateτ Unidirectional error ForbiddenConnection

InboundIdleStateτ Duplex transition to OutboundState Duplex

InboundState Unidirectional error ForbiddenConnection

InboundState Duplex transition to DuplexState

DuplexState error ConnectionExists

TerminatingStateτ await for TerminatedState

TerminatedState can be treated as initial state

Table 4.2: requestOutboundConnection; states indicated with a † are forbidden by TCP.

53

•

ReservedOutboundState

UnnegotiatedState Outbound UnnegotiatedState Inbound

InboundIdleStateτ Duplex

InboundIdleStateτ UnidirectionalOutboundState Unidirectional

OutboundStateτ Duplex

Reserve

Accepted

Connected Overwritten

NegotiatedUnidirectional
Outbound

NegotiatedDuplex
Outbound

NegotiatedDuplex
Inbound

NegotiatedUnidirectional
Inbound

SelfConn

SelfConn−1

SelfConn’

SelfConn’−1

SelfConn’

SelfConn’−1

Figure 4.6: Extra transitions when connecting to onself

State Action

• no-op

ReservedOutboundState error ForbiddenOperation

UnnegotiatedState Outbound error ForbiddenOperation

UnnegotiatedState Inbound error ForbiddenOperation

OutboundState dataFlow DemotedToColddataFlow
Local

OutboundStateτ Duplex Prune or DemotedToColdDuplex
Local

OutboundIdleStateτ dataFlow no-op

InboundIdleStateτ Unidirectional assertion error

InboundIdleStateτ Duplex no-op

InboundState Unidirectional assertion error

InboundState Duplex no-op

DuplexState Prune or DemotedToColdDuplex
Local

TerminatingStateτ no-op

TerminatedState no-op

Table 4.3: unregisterOutboundConnection

54

Has a
connection

to that
peer?

ReservedOutboundState
no

UnnegotiatedState Outbound

connect

Which data
flow was
negoti-
ated?

OutboundState Unidirectional

handshake

OutboundState Duplex

Unidirectional

Duplex

What is the
current
state?

yes

ReservedOutboundState

error ConnectionExists

UnnegotiatedState Inbound

await for handshake

InboundState Unidirectional

error ForbiddenConnection

InboundIdleStateτ Unidirectional

error ForbiddenConnection

InboundIdleStateτ Duplex

OutboundState Duplex

InboundState Duplex

DuplexState

OutboundState Unidirectional

error ConnectionExists

DuplexState

error ConnectionExists

OutboundIdleStateτ dataFlow

error ForbiddenOperation

TerminatingStateτ

await wait time timeout

TerminatedState

Figure 4.7: Outbound connection flow graph

55

•ReservedOutboundState

UnnegotiatedState Inbound

Which data
flow was
negoti-
ated?

InboundState Unidirectional InboundState Duplex

Unidirectional Duplex

DuplexState

requestOutboundConnection

Figure 4.8: Inbound connection flow graph, where both bordered states: ReservedOutboundState and
UnnegotiatedState Inbound are initial states.

Connection manager methods

The following tables show transitions of the following connection manager methods:

• includeInboundConnection: table 4.4

• promotedToWarmRemote: table 4.5

• demotedToColdRemote: table 4.6

• unregisterInboundConnection: table 4.7

States indicated by ‘-‘ are preserved, though unexpected; promotedToWarmRemotewill use UnsupportedState
:: OperationResult a to indicate that to the caller.

States indicated with a † are forbidden by TCP.
Transitions denoted by † should not happen. The implementation is using assertion, and the production system will

trust that the server side calls unregisterInboundConnection only after all responder mini-protocols where
idle for protocol idle timeout.
unregisterInboundConnection might be called when the connection is in OutboundState Duplex. This
can, though very rarely, happen as a race between AwakeDuplex

Remote and DemotedToColdDuplex
Remote

2. Lets consider
the following sequence of transitions:

2race is not the right term, these transitions are concurrent and independent

56

State Action

• • start connection thread (handshake, mux)

• transition to UnnegotiatedState Inbound.

• await for handshake result

• transition to InboundIdleStateτ

dataFlow.

ReservedOutboundState the same as •

UnnegotiatedState prov impossible state†

InboundIdleStateτ dataFlow impossible state†

InboundState dataFlow impossible state†

OutboundState dataFlow impossible state†

DuplexState impossible state†

TerminatingStateτ the same as •

TerminatedState the same as •

Table 4.4: includeInboundConnection

StateIn StateOut transition

• -

ReservedOutboundState -

UnnegotiatedState prov -

OutboundState Unidirectional -

OutboundState Duplex Prune or (DuplexState PromotedToWarmDuplex
Remote)

InboundIdleStateτ Unidirectional InboundState Unidirectional AwakeUnidirectional
Remote

InboundIdleStateτ Duplex InboundState Duplex AwakeDuplex
Remote

InboundState Unidirectional -

InboundState Duplex -

DuplexState -

TerminatingStateτ -

TerminatedState -

Table 4.5: promotedToWarmRemote

57

StateIn StateOut transition

ReservedOutboundState - -

UnnegotiatedState prov - -

OutboundState dataFlow - -

InboundIdleStateτ dataFlow - -

InboundState dataFlow InboundIdleStateτ dataFlow DemotedToColddataFlow
Remote

DuplexState OutboundStateτ Duplex DemotedToColdDuplex
Remote

TerminatingStateτ - -

TerminatedState - -

Table 4.6: demotedToColdRemote

StateIn StateOut transition Returned Value

• - -

ReservedOutboundState - -

UnnegotiatedState prov - -

OutboundStateτ Unidirectional † -

OutboundState Unidirectional † -

OutboundStateτ Duplex OutboundState Duplex -

OutboundState Duplex † -

InboundIdleStateτ dataFlow TerminatingStateτ True

InboundState dataFlow TerminatingStateτ † •
DemotedToColddataFlow

Remote

• CommitdataFlow
Remote

True

DuplexState OutboundState Duplex DemotedToColdDuplex
Remote False

TerminatingStateτ - -

TerminatedState - -

Table 4.7: unregisterInboundConnection

58

•

UnnegotiatedState Inbound

InboundIdleStateτ Duplex

OutboundState Duplex

Accepted

NegotiatedDuplex
Inbound

AwakeDuplex
Local

If the protocol idle timeout on the InboundIdleStateτ Duplex expires the AwakeDuplex
Remote transition is

triggered and the inbound protocol governor calls unregisterInboundConnection.

4.4 Server
The server consists of two components: an accept loop and an inbound protocol governor. The accept loop is using
includeInboundConnnection on incoming connections, while the inbound protocol governor tracks the state of
responder side of all mini-protocols, and it is responsible for starting and restarting mini-protocols, as well as detecting
if they are used, in order to support:

• PromotedToWarmDuplex
Remote,

• DemotedToColdUnidirectional
Remote,

• CommitUnidirectional
Remote and CommitDuplex

Remote transitions.

The inbound protocol governor will always start/restart all the mini-protocols using StartOnDemand strategy.
When the multiplexer detects any traffic on its ingress queues, corresponding to responder protocols, it will do the
PromotedToWarmDuplex

Remote transition using promotedToWarmRemote method.
Once all responder mini-protocols become idle, i.e. they all stopped, were re-started (on-demand) but are not yet

running, a DemotedToColddataFlow
Remote transition is run: the inbound protocol governor will notify the connection

manager using:

−− | Notify the ’ConnectionManager’ that a remote end demoted us to a / cold
−− peer/.
−−
−− This executes :
−−
−− * \(DemotedToCold^{*}_{Remote}\) transition .
demotedToColdRemote

:: HasResponder muxMode ~ True
=> ConnectionManager muxMode socket peerAddr handle handleError m
−> peerAddr −> m (OperationResult InState)

When all responder mini-protocols are idle for protocol idle timeout, the inbound protocol governor will execute
unregisterInboundConnection which will trigger:

• CommitUnidirectional
Remote or CommitDuplex

Remote if the initial state is InboundIdleStateτ Duplex;

• TimeoutExpired if the initial state is OutboundStateτ Duplex;

59

•

ReservedOutboundState

UnnegotiatedState Outbound UnnegotiatedState Inbound

InboundIdleStateτ Duplex

InboundIdleStateτ Unidirectional
OutboundState Unidirectional

OutboundStateτ Duplex

OutboundState Duplex

InboundState Unidirectional

InboundState Duplex

DuplexState

OutboundIdleStateτ Duplex

OutboundIdleStateτ Unidirectional

TerminatingStateτ

TerminatedState

Legend:
requestOutboundConnection

unregisterOutboundConnection

includeInboundConnection

promotedToWarmRemote

demotedToColdRemote

unregisterInboundConnection

Reserve

Accepted

Connected Overwritten

NegotiatedUnidirectional
Outbound

NegotiatedDuplex
Outbound

NegotiatedDuplex
Inbound

NegotiatedUnidirectional
Inbound

C
om

m
itU

ni
di

re
ct

io
na

l R
em

ot
e

DemotedToColdUnidirectional
Remote

AwakeDuplex
Local

AwakeDuplex
Remote

DemotedToColdDuplex
Local

D
em

ot
ed

To
C

ol
dD

up
le

x Lo
ca

l

TimeoutExpired

P
ro

m
ot

ed
To

W
ar

m
D

up
le

x Lo
ca

l

A
w

ak
eD

up
le

x R
em

ot
e

D
em

ot
ed

To
C

ol
d

D
up

le
x Lo

ca
l

D
em

ot
ed

To
C

ol
d

D
up

le
x R

em
ot

e

P
ro

m
ot

ed
To

W
ar

m
D

up
le

x R
em

ot
e

C
om

m
itD

up
le

x R
em

ot
e

AwakeUnidirectional
Remote

DemotedToColdDuplex
Remote

D
em

ot
ed

To
C

ol
dU

ni
di

re
ct

io
na

l Lo
ca

l

CommitUnidirectional
Local

CommitDuplex
Local

Terminate

SelfConn

Figure 4.9: Transitions classified by connection manager method.

60

• no-op if the initial state is OutboundState Duplex or OutboundIdleStateτ dataFlow.

−− | Return value of ’ unregisterInboundConnection ’ to inform the caller about
−− the transition .
−−
data DemotedToColdRemoteTr =

−− | @Commit^{dataFlow}@ transition from @’InboundIdleState’ dataFlow@.
−−
CommitTr

−− | @DemotedToCold^{Remote}@ transition from @’InboundState’ dataFlow@
−−

| DemotedToColdRemoteTr

−− | Either @DemotedToCold^{Remote}@ transition from @’DuplexState’@, or
−− a level triggered @Awake^{Duplex}_{Local}@ transition. In both cases
−− the server must keep the responder side of all protocols ready.

| KeepTr
deriving Show

unregisterInboundConnection :: peerAddr ⇒ m (OperationResult DemotedToColdRemoteTr)

Both CommitUnidirectional
Remote and CommitDuplex

Remote will free resources (terminate the connection thread, close the
socket).

4.5 Inbound Protocol Governor
Inbound protocol governor keeps track of responder side of the protocol for both inbound and outbound duplex connec-
tions. Unidirectional outbound connections are not tracked by inbound protocol governor. The server and connection
manager are responsible to notify it about new connections once they are negotiated. Figure 4.10 presents the state
machine that drives changes to connection states tracked by inbound protocol governor. As in the connection manager
case there is an implicit transition from every state to the terminating state, which represents mux or mini-protocol
failures.

4.5.1 States
States of the inbound governor are similar to the outbound governor, but there are crucial differences.

RemoteCold

The remote cold state signifies that the remote peer is not using the connection, however the only reason why the
inbound governor needs to track that connection is because the outbound side of this connection is used. The inbound
governor will wait until any of the responder mini-protocols wakes up (AwakeRemote) or the mux will be shutdown
(MuxTerminated).

RemoteIdleτ

The RemoteIdleτ state is the initial state of each new connection (NewConnection). An active connection will become
RemoteIdleτ once the inbound governor detects that all responder mini-protocols terminated (WaitIdleRemote). When
a connection enters this state, an idle timeout is started. If no activity is detected on the responders, the connection will
either be closed by the connection manager and forgotten by the inbound governor, or progress to the RemoteCold
state. This depends whether the connection is used (warm or hot) or not (cold) by the outbound side.

61

•

RemoteCold

RemoteIdleτ

RemoteWarm

RemoteHot

MuxTerminated

NewConnection

WaitIdleRemote

CommitRemote

AwakeRemote

MiniProtocolTerminated

MiniProtocolTerminated

DemotedToWarmRemote

PromotedToHotRemote

Figure 4.10: Inbound protocol governor state machine

RemoteWarm

A connection enters RemoteWarm state once any of the mini-protocols starts to operate. Once all hot mini-protocols
started the state will transition to RemoteHot. Note that this is slightly different than the notion of a warm peer, for
which all established and warm mini-protocols are active, but hot ones are idle.

RemoteHot

A connection enters RemoteHot transition once all hot protocol started, if any of them terminates the connection will
be put in RemoteWarm.

62

4.5.2 Transitions
NewConnection

Inbound and outbound duplex connections are passed to the inbound governor. They are then put in RemoteIdleτ state.

CommitRemote

Once the RemoteIdleτ timeout expires the inbound governor will call unregisterInboundConnection. De-
pending on the returned value the connection will either be forgotten or kept in RemoteCold state.

AwakeRemote

While a connection was put in RemoteIdleτ state it is possible that the remote end will start using it. When the inbound
governor detects that any of the responders is active it will put that connection in RemoteWarm state.

Implementation detail

The inbound governor calls promotedToWarmRemote to notify the connection manager about the state change.

WaitIdleRemote

WaitIdleRemote transition happens once all mini-protocol terminated.

Implementation detail

The inbound governor calls demotedToColdRemote. If it returns TerminatedConnection the connection will
be forgotten (as in MuxTerminated transition), if it returns OperationSuccess it will register a idle timeout.

MiniProtocolTerminated

When any of the mini-protocols terminates the inbound governor will restart the responder and update the internal state
of the connection (e.g. update the stm transaction which tracks the state of the mini-protocol).

Implementation detail

The implementation distinguishes two situations: whether the mini-protocol terminated or errored. The multiplexer
guarantees that if it errors, the multiplexer will be closed (and thus the connection thread will exit and the associated
socket closed). Hence, the inbound governor can forget about the connection (perform MuxTerminated).
The inbound governor does not notify the connection manager about a terminating responder mini-protocol.

MuxTerminated

The inbound governor monitors the multiplexer. As soon as it exists, the connection will be forgotten.
The inbound governor does not notify the connection manager about the termination of the connection, as it will be

able to detect this by itself.

PromotedToHotRemote

The inbound governor detects when all hot mini-protocols started. In such case a RemoteWarm connection is put in
RemoteHot state.

63

DemotedToWarmRemote

Dually to PromotedToHotRemote state transition, as soon as any of the hot mini-protocols terminates, the connection
will transition to RemoteWarm state.

64

Appendix A

Common CDDL definitions

1
2 ; Mini −p r o t o c o l c od ec s are p o l y m o r p h i c i n v a r i o u s da ta t y p e s , e . g . b l o c k s , p o i n t s ,
3 ; t r a n s a c t i o n s , t r a n s a c t i o n i d s , e t c . In CDDL we need c o n c r e t e v a l u e s so we
4 ; i n s t a n t i a t e them u s i n g ‘ any ‘ . See ‘CBOR and CDDL‘ i n t h e ne twork
5 ; t e c h n i c a l r e p o r t
6 ; h t t p s : / / ouroboros −ne twork . cardano . i n t e r s e c t m b o . org / p d f s / ne twork −spec
7 ; i f you need f u r t h e r a d v i s e how t o f i n d c o n c r e t e e n c o d i n g o f ‘ Cardano ‘ da ta
8 ; t y p e s .
9

10 block = any
11 header = any
12 t i p = any
13 po in t = any
14 po in t s = [* po i n t]
15 t x I d = any
16 t x = any
17
18 ; a l t h o u g h some o f our p r o t o c o l s are p o l y m o r p h i c over s l o t s , e . g .
19 ; ‘ l o c a l −tx −moni tor ‘ , s l o t s are a lways encoded as ‘ word64 ‘ .
20 s lotNo = word64
21
22 word16 = 0..65535
23 word32 = 0..4294967295
24 word64 = 0..18446744073709551615

65

Bibliography

Harris, T. and Peyton Jones, S. (2006). Transactional memory with data invariants. In First ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT’06).

Stevens, W., Fenner, B., and Rudoff, A. (2003). UNIX Network Programming, volume 1 of Addison-Wesley Professional
Computing Series. Addison-Wesley Professional. https://learning.oreilly.com/library/view/
the-sockets-networking/0131411551.

66

https://learning.oreilly.com/library/view/the-sockets-networking/0131411551
https://learning.oreilly.com/library/view/the-sockets-networking/0131411551

	System Architecture
	Protocols and node design
	Congestion Control
	Real-time Constraints and Coordinated Universal Time

	Multiplexing mini-protocols
	The Multiplexing Layer
	Wire Format
	Fairness and Flow-Control in the Multiplexer
	Flow-control and Buffering in the Demultiplexer

	Node-to-node and node-to-client protocol numbers

	Mini Protocols
	Mini Protocols and Protocol Families
	Protocols as State Machines
	Overview of all implemented Mini Protocols
	CBOR and CDDL
	Dummy Protocols
	Ping-Pong mini-protocol
	Request-Response mini-protocol

	Handshake mini-protocol
	Description
	State machine
	Client and Server Implementation
	Handhsake version 11 and greater
	CDDL encoding specification (< 11)
	CDDL encoding specification (11 to 12)
	CDDL encoding specification (13)

	Chain-Sync mini-protocol
	Description
	State Machine
	Implementation of the Chain Producer
	Implementation of the Chain Consumer
	CDDL encoding specification

	Block-Fetch mini-protocol
	Description
	State machine
	CDDL encoding specification

	Tx-Submission mini-protocol
	Version 1
	Version 2
	Client and Server Implementation

	Keep Alive Mini Protocol
	Description
	State machine
	CDDL encoding specification

	Local Tx-Submission mini-protocol
	Description
	State machine

	Local State Query mini-protocol
	Description
	State machine
	CDDL encoding specification

	Peer Sharing mini-protocol
	Description
	State machine
	Client Implementation Details
	Server Implementation Details
	CDDL encoding specification (11 to 12)
	CDDL encoding specification (13)

	Pipelining of Mini Protocols
	Node-to-node protocol
	Node-to-client protocol

	Connection Manager State Machine Specification
	Introduction
	Components
	Connection Manager
	Overview
	Types
	Connection states
	Transitions
	Protocol errors
	Closing connection
	Outbound connection
	Inbound connection

	Server
	Inbound Protocol Governor
	States
	Transitions

	Common CDDL definitions

